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ABSTRACT

Environmental control on the battlefield enhances readiness, reduces casualties, and
protects the sensitive equipment upon which U.S. doctrine relies. Purchase and delivery of
fuel necessary to provide this service was responsible for an estimated $1.4 billion in costs

and 33 resupply convoy casualties per year at the peak of U.S. wars in Iraq and Afghanistan.

It is well understood that the current semi-autonomous mode of environmental con-
trol unit (ECU) operation results in generators operating at low average loads—and
low fuel efficiency—to accommodate periodic unmanaged spikes in peak load. We pro-

pose a mechanism to reduce costs through optimal prescriptive management of these ECUs.

We exploit the fact that ECU operation is time-shiftable to develop a mixed-integer
linear programming (MILP) model that optimally schedules ECUs to eliminate un-
managed peak demand, reduce generator peak-to-average power ratios, and facilitate a
persistent shift to higher fuel efficiency. Using sensitivity analysis, we quantitatively
demonstrate how grid composition, temperature band tolerance, and energy storage

capabilities contribute to fuel efficiency under this approach.
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Executive Summary

Heating, ventilation, and air conditioning (HVAC) on the battlefield enhances readiness and
mission effectiveness, reduces combat and non-combat casualties, and protects the sensitive
technology upon which an U.S. doctrine and military might increasingly relies. HVAC
in expeditionary environments is provided by electric air conditioners and environmental
control units (ECUs) that are commonly powered by diesel generators. ECUs account for
up to 70% of total expeditionary electricity consumption, and the purchase and delivery
of the fuel required to operate these generators places enormous financial, logistical, and
human costs on the U.S. military [1]. Data from fiscal year 2007 suggest that HVAC fuel
requirements in Iraq and Afghanistan were responsible for $1.4 billion in costs and 33

resupply convoy casualties in a single year [2], [3].

We propose a mechanism to reduce these costs by controlling ECU operation in a man-
ner that optimizes generator fuel consumption while maintaining environmental conditions

within desired parameters.

ECUs currently act independently under local thermostatic control. This semi-autonomous
operation requires that the electrical grid have sufficient generation capacity to support the
peak demand that would occur if all connected loads required power at the same instant. In
practice, however, most electrical loads are not operating at all times and average electrical
demand is often well below peak demand. Multiple studies by the U.S. Army and U.S.
Marine Corps indicate that half of all generators in the field operate at less than 32% average
load [4].

Sizing generators for the peak demand which might occur, yet operating them only at the
actual demand that does occur from intermittent loads is a significant driver of fuel con-
sumption. Generator efficiency is non-linear, highest when loaded near rated capacity and
dropping rapidly as load declines below 50% [4]. Frequent operation at low power—and
low fuel efficiency—is the price paid for the constant readiness to supply unmanaged de-

mand.

We address this issue by prescriptively managing ECU operation. We exploit the fact that

ECU events are time-shiftable, or capable of being advanced or deferred by small incre-

Xix



ments with no impact to the mission, and show that ECUs can be optimally scheduled to
eliminate unmanaged peak demand, improve generator peak-to-average power ratios, and

reduce total fuel consumption.

Analysis was conducted using discrete-time simulation to model shelter thermal character-
istics and ECU operation under existing control schemes, followed by mixed-integer linear
programming (MILP) to assess potential fuel savings under various optimization policies.

Notable findings include:

* Fuel consumption in the baseline optimally scheduled ECU grid is 28% lower than
legacy ECU policies

» The greatest benefit to ECU optimization occurs when ECU duty cycle (the propor-
tion of time that ECUs are operating) is low. Optimal and legacy results converge as
duty cycle approaches 100%

* Energy storage offers very little benefit in the grid configurations tested, with only
2% to 6% of generator output stored. Optimal solutions overwhelmingly choose to
do ECU work in advance rather than store energy, at a loss, to do work later.

* Generator clustering, i.e., deploying two 30 kW generators rather than a single 60
kW generator, permits a broader range of optimization alternatives that can deliver

greater fuel economy under certain load conditions.
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CHAPTER 1.

Introduction and Research Objectives

An essential component of U.S. military power is the ability to conduct sustained opera-
tions in every area of the globe. When these operations occur in extreme climatic regions,
preserving combat effectiveness and minimizing incidence of combat and non-combat ca-
sualties depend heavily upon protecting military forces from the physical and psychological
effects of environmental extremes [1]. Personnel and equipment are safeguarded from bit-
ter cold and blazing heat by expeditionary shelter systems consisting of structures with
heating, ventilation, and air conditioning (HVAC) systems supported by electrical genera-

tion and distribution equipment.

This thesis evaluates the cost of providing environmental protection, reviews related liter-
ature, and proposes a mechanism to reduce costs by exploiting specific characteristics of

HVAC loads and the generators that power them.

1.1 Operational Energy

The Department of Defense (DOD) is the largest energy consumer within the U.S. govern-
ment, accounting for 80% of all federal energy consumption [2]. As shown in Table 1.1,
operational energy' demands for fiscal year (FY) 2015 are estimated at 96.2 million barrels
of refined petroleum products, or more than 263,000 barrels per day [S]. To put this fig-
ure in perspective, DOD operational energy requirements are greater than that of the entire

nation of Austria, the world’s 53" largest consumer of petroleum [6].

'Operational energy is defined in law as “the energy required for training, moving, and sustaining military
forces and weapons platforms for military operations. The term includes energy used by tactical power
systems and generators and weapons platforms” [3]. This is distinct from facility energy, described by [4] as
the energy to power fixed installations, enduring locations, and non-tactical vehicles (NTVs).



Historical Estimated
FY09 FY10 FY11 FY12 FY13 FY14 | FY15

o @ Army 18.9 18.9 20.1 16.1 127] 223 217
E § g Navy 295 30.0 31.0 31.5 284 36.1| 337
% g & Air Force 61.7 63.0 61.4 55.8 478| 424| 368
g Qé USMC 0.6 0.4 0.3 0.2 0.2 1.5 1.2
O s '§ Other DoD 0.5 0.5 0.5 0.4 0.7 23 25
H Total Demand| 111.2| 112.8] 113.3] 104.0 89.8| 104.6| 96.2
Expenditures,

$ Billion $ 103 $133 (5168 | $ 164 | $ 148 | $16.0 | $15.0

Table 1.1: DOD operational energy demand, FY09 through FY15, from [5].

Globally, aircraft account for an estimated 75% of this usage with ships, ground vehicles,
and support operations consuming the remaining 25% [7]. This mix changes in active
combat zones, where large cargo aircraft are less likely to be refueled on the ground, up-
armored tactical ground vehicles are heavier and less fuel-efficient, and a greater portion
of electricity is supplied by local generation rather than a municipal grid. A 2009 United
States Marine Corps (USMC) study of 5.2 million gallons of fuel consumed by Marine
Expeditionary Battalion - Afghanistan (MEB-A) in March, June, September, and Decem-
ber discovered that 32% of the fuel usage was devoted to electrical power generation [8].
Figure 1.1 displays a summary result from this study.

H Power Generation
& Aviation

H Other

Figure 1.1: MEB-A bulk fuel consumption, August 2009, from [9].



The majority of this generated electricity is used for environmental control, i.e., HVAC
systems. Figure 1.2 shows results from a USMC study of Marine Air Ground Task Force
(MAGTF) organizational equipment inventories that found air conditioners and environmental
control units (ECUs) accounted for 57% of expeditionary power demand [9]. Similarly, re-
search conducted over a 48-hour period on an instrumented expeditionary camp at Fort
Blevins showed that 97.7% of total electricity consumption was devoted to maintaining
desirable temperatures in occupied areas [10]. In a 2012 survey of multiple studies, the
Congressional Research Service cited a range of 57% to 70% of generator power output
committed to expeditionary environmental control [2]. We adopt a value of 60% for further

analysis.

® Environmental Control Unit
& Air Conditioner

® Communications

HFood Service

o Water

HLaundry

H Other

Figure 1.2: Analysis of MAGTF equipment power demands. Environmental control equipment
accounts for 57% of electrical power consumption, from [9].

1.2 The Cost of Heating and Cooling

Operational energy costs and risks have been the subject of Congressional hearings, con-
tributed to the creation of a presidentially-appointed Assistant Secretary of Defense for
Operational Energy Plans and Programs, and received more than $4 billion to support de-
mand reduction and supply diversification efforts [11], [12]. Examination of consumption,
cost, and casualty data for a sample year illustrates the magnitude of resources required to

fulfill expeditionary heating and cooling demands.



1.2.1 Monetary Costs

In FY2007, the Army Petroleum Center purchased 590 million gallons of fuel to supply
U.S. forces operating in Iraq and Afghanistan [13]. Applying USMC estimates that 32%
of this fuel was directed to electrical power generation, and that 60% of the resulting elec-
tricity was utilized for environmental control, we estimate that nearly 20% of the 2007 fuel
requirement, or 113 million gallons, were devoted to heating and cooling. Additionally,
contractor activities—including prime power generation for U.S. forces—require substan-
tial fuel whose cost is embedded in the contract price rather than in DOD consumption

figures, resulting in underestimation of actual operational fuel requirements [2].

Applying the 2007 Defense Logistics Agency - Energy (DLA-E) standard price of $2.00
per gallon for diesel fuel, we establish a floor of $226M in heating and cooling costs for
Operation Iraqi Freedom (OIF)-Operation Enduring Freedom (OEF) in 2007 [14]. At the
present standard price of $3.15 per gallon, the minimum cost to duplicate this effort rises
to more than $356M.

DLA-E figures merely represent the fuel commodity price “at the pump” and do not ade-
quately capture the true cost of delivery to the point of ultimate consumption. Escalation
factors include security, delivery and maintenance personnel, delivery, storage and distribu-
tion equipment, and the fuel consumed in the delivery process. A survey of computational
methodologies by the Congressional Research Service reported that fully burdened costs
for a gallon of fuel ranged from $3 to $45 per gallon if delivered by land, and $29 to $45
per gallon if delivered by air [2]. Among these was an Army Environmental Policy Institute
2008 calculation for the fully burdened cost of fuel in Iraq of $14.13 per gallon. Incorpo-
rating this estimate reveals a final cost of $1.6 billion for heating and cooling in FY2007
alone [15].

1.2.2 Human Costs

Resupply convoys are an inviting target and significant operational vulnerability, and lo-
gistic convoy personnel account for many of the killed and wounded in recent conflicts.

Figure 1.3 shows resupply casualty levels in Iraq and Afghanistan from 2003 to 2007.



Applying 2007 convoy casualty factors?, 33 killed or wounded personnel in a single year

are attributable to our demand for heating and cooling [13].

Resupply Casualties by Theater and Year
1,200
2 1,000
s 800 -
©
b 600 -
o
3 400
E
- | 2003 2004 2005 2006 2007
O Afghanistan 5 1 33 64 75
B Iraq 531 994 618 452 263

Figure 1.3: Casualties from resupply convoys in Iraq and Afghanistan, 2003-2007, from [13].

1.3 Efficiency and Availability Trade-off

Cyclical loads such as ECUs present a unique and significant obstacle to achieving max-
imum efficiency in an expeditionary energy system. Though frequently idle and drawing
little power, the defining characteristic of these loads is that they could activate at any
moment. Thermostats monitoring temperature within each facility issue control signals to
associated ECUs without regard to existing or pending demands imposed upon the grid.
We label these loads, which are permitted to act locally appropriate but are globally naive,
as unmanaged. Such demand-side autonomy requires the grid to maintain sufficient online
capacity to support unilateral load decisions or risk an overload condition. As a result of
these design choices, the system suffers from chronic overgeneration, underutilization, and

suboptimal fuel efficiency.

1.3.1 Peak and Average Loads
Expeditionary energy system design currently begins with analysis of electrical demands

under the following framework:

2One casualty per 3.762 million gallons of delivered fuel in Iraq. One casualty per 2.329 million gallons
of fuel delivered in Afghanistan.



1. Determine the type, quantity, and characteristics of connected loads in each structure
or facility.

2. Calculate the theoretical maximum power requirement of a facility if all connected
equipment is simultaneously operating.

3. Adjust this maximum value by applying a demand factor (<1) representing an assess-
ment of the realistic portion of facility equipment that would simultaneously operate.

4. Add allowances for future growth [16].

Demand factors for air conditioning loads are specified at 1.0, indicating that an appropri-
ately designed power system must be capable of immediately meeting the full, simultane-
ous demands of all connected units [16].> Actual ECU duty cycles* depend on factors such
as structure characteristics and current environmental conditions, and are often well below
1.0 [17].

Simulation results for generator output with connected loads operating at 75% and 25%
duty cycles are presented in Figure 1.4 to illustrate the relationship between ECU duty cycle
and generator loading. When connected loads operate at 75% duty cycle, average power
demand is 21.6 kilowatt (kW) and peak demand is 28.8 kW. Generator utilization is high,
and unused capacity (indicated by white space) is low. At 25% duty cycle, average power
demand is only 7.2 kW while peak demand remains 28.8 kW. Utilization is much lower,
substantial capacity is wasted, and the generator frequently runs below 30% load, leading
to inefficient and potentially damaging operation [18]. Field observations at multiple sites
have repeatedly observed this effect [18], [19]. Figure 1.5 displays historical generator load
at a village stability platform (VSP) camp in Afghanistan over 96 hours in June 2012.

30ther demand factors include laundry (0.8), base operations (0.7), communications (0.7), billeting (1.0),
latrines (0.8), warehouse (0.6), and kitchen facilities (0.9) [16].

“Duty cycle is the fraction of a time period that a particular unit is operational. For example, a unit that
runs six minutes out of every ten has a duty cycle of 0.6.



Simulated 30 KW Generator Loading
Three 9.6KW loads at 75 % duty cycle

Simulated 30 KW Generator Loading
Three 9.6KW loads at 25 % duty cycle
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Figure 1.4: Simulated 30 kW generator operation with loads at 75% and 25% duty cycles.
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Figure 1.5: U.S. Forces Afghanistan camp electrical demand over a 96-hour period in June 2012.
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These demand peaks establish the minimum amount of power that the generation network
must constantly be prepared to deliver. Failure to have sufficient online capacity may over-
load generators, causing voltage and frequency instability that can damage sensitive equip-
ment or trip protective circuits and immediately disconnect serviced loads.” Though a
generator may, on the average, be capable of powering additional devices, the brief peri-
ods of peak demand from those loads already being serviced prevent the connection of any

further equipment.

1.3.2 Generator Fuel Efficiency

Generator efficiency (1) is the fraction of chemical energy from fuel that is converted to
usable electrical energy [18]. Efficiency is generally greater for larger units and rises non-
linearly with load factor® for all sizes of generators. Figure 1.6 depicts the relationship

between load factor and fuel efficiency for five sizes of Tactical Quiet Generators (TQGs).

Maximum system efficiency is achieved by selecting the smallest generator capable of
providing the required power. For example, a single 40 kW load is better served by a 60
kW generator operating at 0.67 load factor () ~ 32%) than a 200 kW generator running at
0.20 load factor (n ~ 25%).

SWe recognize that military specification generators may operate reliably up to 150% of rated power for
limited periods under certain conditions [20]. Unless explicitly specified, we adopt nameplate ratings as the
upper limit of generator capacity for two reasons. First, we treat this robustness of military generators as
an operational risk mitigator reserved for the benefit of those in the field. Second, many generators used in
combat theaters are not military specification and offer no assurance of similar overload capacity.

Generator load factor is power output as a percentage of maximum continuous rated load. For example,
a generator rated for 100 kW presently supplying 70 kW is operating at 0.70 load factor
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Figure 1.6: Fuel efficiency of U.S. military TQGs as a function of generator size and load factor,
from [18].

The present requirement to size generators based on peak, rather than average, power de-
mand leads us to provision high-capacity generators from which we tolerate substantial
periods of inefficient, low power operation as the price to be paid for peak readiness. The
Chief, Technical Management Division at the United States Army (USA) Program Man-
ager for Expeditionary Energy and Sustainment Systems reports that most generator sets
used for non-critical applications run at 25-30% average load. Raising that figure while still
allowing for peak power operation is described as one the organization’s most significant
challenges [20].

1.4 Research Objectives

We propose a mechanism in which time-shiftable, non-critical electrical loads in an expe-
ditionary energy grid are optimally scheduled to minimize fuel consumption. We combine
information on current load and generator status, generator fuel efficiencies, and shelter

conditions and characteristics in a mixed integer linear program (MILP) that prescriptively



defines operational schedules. We construct scenarios with perfect future knowledge to
establish optimal upper bounds on improvements to fuel efficiencies, and use simulation
of unmanaged systems to establish our lower bounds. Finally, we employ rolling-horizon

optimization to determine how a fielded system might perform relative to these bounds.

1.4.1 Scope
Though the model is extensible to an arbitrary number of power sources and loads, com-
putational restrictions limit our exploration to systems of no more than four power sources

and nine time-shiftable loads.
We investigate the risks and benefits of a prescriptive operating model under varying:

¢ Environmental conditions
* Equipment configuration

* Energy storage capabilities

Limitations and assumptions accompany our mathematical model in Section 4.1

1.4.2 Thesis Contributions and Outline

Significant achievements and ongoing efforts by government and industry have produced
tactical hybrid energy systems, improved load efficiency, and reduced overall demand. This
thesis aims to complement these efforts by introducing optimized, intelligent demand side
management (DSM) to the tactical energy grid using concepts and practices from the com-

mercial utility sector and electric vehicle manufacturers.

In Chapter 2, we review the academic, commercial, and government literature that inform
the present research. Chapter 3 provides an overview of expeditionary energy systems to
establish the background for our mathematical optimization model proposed in Chapter 4.
Our findings are presented in Chapter 5 and Chapter 6, and conclusions and future work

are contained in Chapter 7.
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CHAPTER 2:

| iterature Review

This thesis lies at the intersection of three fields of research and application. The first are
efforts, led by the U.S. military and supported by industry and academia, to improve the
efficiency of fielded generators, ECUs, and structures through engineering and procedural
solutions. The second is hybrid microgrid architectures incorporating renewable produc-
tion, uncertain demand, and energy storage for use in remote military and civil applications.
Finally, we examine academic literature on deferrable electric load management in com-

mercial and residential scenarios.

2.1 Military Energy Efficiencies
Motivated by the expeditionary energy costs discussed in Section 1.2, the DOD has aggres-

sively explored HVAC energy efficiency and conservation efforts.

Power production has improved with the introduction of more efficient generators and ad-
dition of hybrid power plants. The Advanced Medium Mobile Power Sources (AMMPS)
series of 5-60 kW generators, fielded in FY2011, are smaller, lighter, and 21% more fuel
efficient than the preceding TQG series [21], [22]. The USMC Experimental Forward
Operating Base (EXFOB) technology demonstration event, conducted at least once per
year since 2010, has led to the adoption of two hybrid systems as programs of record.
The Ground Renewable Expeditionary Energy Network System (GREENS) combines solar
panels and energy storage sufficient to power a battalion combat operations center (COC),
while the Mobile Electric Hybrid Power Sources (MEHPS) merges batteries, solar panels,
and generators to save up to 50% in fuel while reducing generator run time by as much as
80% [23].

Research efforts directed at consumption efficiencies have produced radiant barriers that
double the insulative value of tent walls to reduce thermal load [23]. Application of closed-
cell spray foam to tent exteriors, common in Iraq and Kuwait, is estimated to reduce ECU

operation and subsequent fuel consumption by up to 50%, while research into high per-
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formance, lightweight aerogel compounds show potential for 35% fuel savings over an
uninsulated tent [24], [25]. Fielding of the Improved Environmental Control Unit (IECU)
in sizes from 9,000 to 60,000 British thermal units (BTUs), begun in 2011, offers fuel
savings of 6% to 28% depending upon size [26].

Insulation and other demand-side conservation methods reduce average power demand
without lowering peak demand. While this yields desirable fuel savings, it also serves to in-
crease the peak-to-average power ratios that our present research attempts to address. Prior
efforts to integrate hybrid generation with intelligent load control include the Hybrid Intel-
ligent Power (HI-Power) system, a $3.5 million research and development effort awarded
in 2010 and demonstrated in 2012 [27], [28]. As of 2014, the development of systemic so-
lutions to address the generator-load inefficiency remained a top recommendation from the
Tactical Power Systems study conducted by the Lincoln Laboratory at the Massachusetts
Institute of Technology (MIT) [18].

2.2 Hybrid Smart Microgrids

For clarity, we begin by articulating the features and characteristics that distinguish micro,

hybrid, and smart grids.

Microgrids combine multiple potentially dissimilar generation sources with various loads
through a network of controllers, distribution panels, and cabling [29]. Properly designed
microgrids save fuel by aggregating numerous small loads for servicing with a fewer num-
ber of larger, more efficient power sources. In one example, the USA observed fuel savings
of 17% by replacing thirteen 60 kW TQGs at Bagram Airfield, Afghanistan with a one
megawatt (MW) microgrid in August 2011 [11].

Hybrid power systems combine two or more dissimilar energy sources into a single com-
posite source intended to provide greater efficiency or increased resilience over single-
source generation systems [18]. Components of an expeditionary hybrid system may in-
clude reciprocating diesel generators, photovoltaic (PV) solar arrays, wind turbines, and

battery storage.
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Smart grids utilize information about energy sources, loads, and storage devices to improve
grid efficiency and reliability [30]. This basic information can be augmented with addi-
tional data on user behavior, environmental conditions, or forecasts to enhance renewable

integration and make predictive management decisions.

Existing microgrid optimization literature focuses on minimizing costs via long-term in-
frastructure investment or short-term supply-side dispatch decisions. Bouaicha [31] ex-
amines minimum-cost fulfillment of specified demand by incorporating estimates of near-
term renewable generation forecasts. Ulmer [32] extends this work by maximizing the
endurance of an isolated grid at a fixed location by using renewable generation estimates
to inform capital planning decisions. Ongoing work by Newman [33] focuses on develop-
ment of a decision support tool to aid in pre-deployment equipment provisioning selections
to minimize DOD total mission lifecycle costs. Sadiqi, Pahwa, and Miller [34] conduct

similar analysis for rural community electric hybrid power systems in Afghanistan.

2.3 Demand-Side Management

Load-following electrical grids treat energy demands of connected loads as immutable pa-
rameters that must be completely satisfied if the grid is to remain stable. Generator output
will vary, storage devices will charge and discharge, and additional production resources

will be brought online or placed offline to match supply to demand.

Introducing basic smart grid features permits demand side management (DSM), a feedback
and control mechanism to reshape the demand profile to match available supply. DSM im-
plementations vary by provider, customer, and connected load. The least intrusive solutions
merely notify consumers of an opportunity to reduce costs by limiting demand, while the
most prescriptive programs allow the grid to explicitly permit or deny operation of a par-
ticular device [35]. Candidate loads for DSM control must be time-shiftable, or capable of
being satisfied within a range of time periods, and cyclical, or naturally subject to alternat-
ing on / off periods.” Substantial research has been performed on the application of DSM

to electric vehicle (EV) charging and to commercial and residential appliance control, and

"Deferrable is commonly used in the literature to describe loads that may be delayed to a more advan-
tageous time. We adopt the convention that time-shiftable loads include not only deferrable loads, but also
those demands that may be fulfilled earlier.
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various DSM approaches have been successfully implemented to reduce costs and manage

peak demand.

2.3.1 Electric Vehicle Charging

The electric vehicle charging problem seeks to minimize electricity cost while delivering
a sufficiently charged vehicle on a schedule that meets the customer’s demands. Alizadeh,
Kesidis, and Scaglione [36] compare heuristic and near-optimal scheduling alternatives
for known demands and unconstrained supply. Chen, Ji, and Tong [37] propose a heuris-
tic to meet demand on a known schedule while subject to uncertain renewable sources.
Mohsenian-Rad and Ghamkhari [38] express a closed-form solution to minimize cost under
a constantly available supply but with uncertain vehicle departure times. Xu and Pan [39]
address both uncertain arrival times and renewable production in a multiple EV charging lot
that incentivizes incoming drivers who are less time-sensitive to return onboard vehicle en-
ergy to the grid to support the immediate charging—at a premium—of more time-sensitive
customers. Sherif, Zhu, and Lambotharan [40] formulate an optimization model that in-
tegrates EVs into a residential smart grid with the objective of minimizing neighborhood
peak-to-average power ratio by using vehicle onboard batteries as both loads and power

sources.

2.3.2 Appliance Control

Prescriptive residential and commercial DSM constitutes a bargain between energy sup-
pliers and customers in which customers surrender a degree of control over the timing of
demand satisfaction in exchange for lower utility rates or other incentives. Suppliers exert
this control to stabilize demand across multiple customers during peak periods. The ability
to level demand reduces the risk of overloading portions of the grid, permits increased re-
newable penetration, and potentially reduces the amount of spinning reserve® that a utility

must maintain [35].

Loads most suitable for shifting include HVAC, water heating, clothes and dish washing
appliances, and EV charging. Vlot, Knigge, and HanSlootweg [42] find that 12% of Dutch

8Spinning reserve is unused production capacity available to compensate for dramatic load changes or
generation outages. It is online, synchronized to the grid, and capable of reaching full power within 10
minutes [41].
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national electricity usage is suitable for residential load shifting, and that investment in
a nationwide smart grid would have the effect of adding 700 MW of generation and 5
gigawatt-hours (GWhs) of storage to the grid with a cost recovery period of less than seven
years. In their stochastic optimization of energy bidding strategies in community micro-
grids, Nguyen and Le [43] show that flexible HVAC scheduling can significantly reduce
costs while enabling increased renewable participation. Similarly, Tarasak, Chai, Kwok,
and Oh [44] show that a notional hotel participating in a demand bidding program’ can
more than double peak monetary rewards by scheduling HVAC loads.

Barriers to adoption of DSM include capital investment costs for grid integration, lack of
standardized communication and negotiation protocols between sources, loads, and stor-
age, and undeveloped cost and reward sharing arrangements between energy suppliers and
customers [35], [46], [47]. The DOD has begun limited work to establish communications
protocols through the HI-Power and Alternative Energy Demonstration Project [27], [48].
Further protocol development and implementation was a top recommendation of the 2014
MIT Lincoln Laboratory study [18].

“Demand bidding programs are utility-managed programs that encourage large customers to commit to
future demand reductions if called upon by the utility during peak periods. See [45] for details of one program.
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CHAPTER 3:
Expeditionary Energy Systems

This chapter provides an overview of expeditionary energy systems and components. We
intend to equip readers with sufficient knowledge to comprehend the model we will propose
in Chapter 4, understand the related constraints and assumptions, and interpret the findings
presented in Chapter 5 and Chapter 6. Readers interested in further technical and operating
information for the diverse array of DOD and service-specific equipment are directed to

the referenced sources.

We limit our examination to tactical power only, excluding prime and commercial power
production and distribution. Prime power is utility-grade power production and distribution
to support major bases, airfields, and other large requirements. Prime power generators are
those larger than 200 kW and with output voltages up to 4,160 volts (V) [49]. Installa-
tion, operation, and maintenance of these systems require highly trained personnel found
in specialized units such as the 249th Prime Power Battalion. The size, capability, and
complexity of these systems place them beyond the reach of forward tactical units and out-
side the scope of our research. Figure 3.1 shows the relationship between tactical, prime,

and commercial power.

Tactical
power

Commercial
power

Figure 3.1: The expeditionary power continuum, from [49]. We limit our study to tactical power.

3.1 Energy System Architectures

At a minimum, an expeditionary energy system consists of power sources, electrical loads,
and the distribution equipment required for interconnection. Specific site configurations
vary based upon the nature of the power requirement, equipment and personnel available,

and the type and duration of the mission being supported.
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3.1.1 Spot Generation
The simplest configuration is spot generation, in which a single generator provides power

to a set of connected loads. Figure 3.2 depicts a simplified spot generation line diagram.

Generator

Y

Distribution

I l I
Y Y
Load 1 Load 2 Load 3

Figure 3.2: Notional spot generation configuration.

Spot generation is appropriate when:

* Total power requirement is within capacity of a single generator.
* Isolated power is required due to geographic or reliability considerations.

e Mission duration is short.

The single generator is sized to accommodate peak demand. Actual demand may fluctuate
significantly, causing high peak-to-average ratios and low utilization. Many spot generation

systems operate with an average load factor less than 30% [18].

3.1.2 Multiple Generator Systems

Some shortcomings of spot generation can be overcome by using a multiple generator
configuration as illustrated in Figure 3.3. Generators are selected so that their combined
output is sufficient to satisfy peak demand. One or more generators are designated as
the primary generator(s) and the others as standby units; once power demand exceeds the
capacity of the primary generators the standby generators will start, warm up, synchronize

frequency and phase with the primaries, and begin supplying power to the loads.
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Military specification generators are sufficiently robust to permit overloading of the primary
generator for several minutes until the standby generator comes online [18], [20]. Control
logic monitors the system load and can be configured to shut down the standby generator(s)

when demand is once again within the capacity of the primary generator.

Generator 1 Generator 2
Distribution

| l I
\J Y
Load 1 Load 2 Load 3

Figure 3.3: Notional two generator configuration.

Peak-to-average ratios are the same as a spot generation configuration, but because the
standby generators only operate when load is high, properly configured multiple generator
systems achieve higher average utilization. Multiple generator arrangements are also more
reliable, allowing the system to operate at diminished capacity in the event of mechanical

failure of a single generator.

3.1.3 Hybrid Systems
Hybrid systems aggregate multiple types of power sources into a single composite supply.

Power sources in a hybrid grid may include two or more of the following:

* Reciprocating diesel generators
* PV solar arrays
* Wind turbines

* Energy storage

Figure 3.4 illustrates a simplified hybrid power system incorporating energy storage and
renewable production. Though a single-generator system is represented, the architecture

is extensible to include multiple generators, alternative sources, and storage capabilities.

19



Control logic manages generator operation, storage replenishment and depletion, and re-
newable contributions. In general, demands are preferentially met by current perishable
production (e.g., solar or wind), then with available storage capacity, and finally by gener-

ator output. Production in excess of demand is used to replenish storage as required.

Generator

Y

esnoelllgse ° - — Distribution <«—::{ Storage
I l I
Y ¥
Load 1 Load 2 Load 3

Figure 3.4: Notional single generator hybrid configuration.

Examples of currently available hybrid systems are the Earl Energy FlexGen and ZeroBase
H-Series, combining diesel generation, battery storage, and PV renewable components to
form modular systems with capacities from 3 kW to 240 kW [50], [51].

3.1.4 Mixed Configurations

In practice, electrical generation and distribution at forward locations is often accomplished
by an ad-hoc arrangement of available equipment that has been assembled over the months
or years that a site has been in operation [19], [48], [52], [53], [54], [55]. Grid topology
may be the result of the most expedient courses of action rather than the most effective
or efficient. High priority loads such as tactical operations centers (TOCs) or medical
treatment areas are frequently assigned a dedicated generator in an attempt to increase

reliability at those locations.

3.1.5 Smart Grid
A smart grid is one that gathers and acts on information to improve the efficiency and relia-
bility of electricity production and distribution [56]. Application of smart grid principles to

tactical power systems is the subject of ongoing efforts to articulate requirements, balance
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costs, and assess reliability and vulnerability risks [57]. Specific benefits of a smart tactical

power grid are expected to include:

Lower fuel consumption

Reduced maintenance and aural signature due to fewer generator operating hours

Priority load shedding that drops non-critical loads when necessary to preserve con-

tinuity of power to critical loads

Reduced equipment requirements as loads are aggregated on to fewer generators

Simplified configuration and management

* Increase penetration and efficiency of renewable resources [18]

Figure 3.5 represents a hybrid grid enhanced through addition of bidirectional communica-
tion and control channels that permit each node to broadcast current status, send or receive

commands, and signal upcoming events.

Generator

t

System Control

Renewable s ~ = Distribution < 1 Storage
[ u 1y
vy Ty
Load 1 Load 2 Load 3
- — -
Power Communication

and Control

Figure 3.5: Notional smart grid configuration. The control node monitors conditions and adjusts
loads and sources to maximize efficiency.

Existing or developmental systems that provide a limited subset of smart grid capabilities
include the Improved Power Distribution System, Electrical (IPDISE) and the DRASH In-
telligent Power Technology family of equipment [58], [59]. These solutions focus almost

exclusively on supply-side management by offering generator control, supply consolida-
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tion, and phase balancing.!? With the exception of load shedding, they do not offer DSM

capabilities.

Optimized time-shiftable load management as envisioned in this research requires a min-
imum foundation of smart grid capabilities that include ECU and generator control, and

environmental monitoring of shelters serviced by the ECUs.

3.2 Energy Production

3.2.1 Diesel Generators

Reciprocating diesel generators provide a robust, reliable source of tactical power in sizes
from 5 kW to 200 kW. The Advanced Medium Mobile Power Sources (AMMPS) series

of medium tactical generators, detailed in Figure 3.6 and Table 3.1, supply tactical power
requirements from 5 kW to 60 kW across the DOD.

Figure 3.6: Advanced Medium Mobile Power Sources generators, 5 kW, 10 kW, 15 kW, 30 kW,
and 60 kW, from [60].

10Three-phase power incorporates three alternating current (AC) signals, each 120 degrees out of phase
with the others. Loads may be designed to use all three phases, or they may be powered from only a single
of these phases. Multiple single-phase loads must be apportioned among the three source phases to prevent
imbalances. Failure to properly balance will lead to degraded performance or permanent equipment damage.
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5/60  5/400 10/60 10/400 15/60 15/400 30/60 30/400 60/60 60/400

| SIZE: TQG (I x w x h") 50-32-36 62-32-36 69-36-54 80-36-54 87-36-58 |
ISIZE: AMMPS 45-32-36 55-32-36 65-36-53 75-36-53 82-36-53 I
|WEIGHT: TQG (lbs) 888 911 1182 1220 2124 2238 3006 3015 4063 4153 |
IWEIGHT: AMMPS 784 787 1085 1100 1492 1513 2068 2174 2932 3112 I

FUEL: TQG @ prof. .46 74 1.22 1.83 3.28

(60 Hz, DL-2, gal/hr)

FUEL: AMMPS .34 i55 77 1.59 3.01

(60 Hz, DL-2, gal/hr)

Table 3.1: Advanced Medium Mobile Power Sources performance data, from [61].

More significant power requirements are currently met by the 100 kW and 200 kW TQGs,

illustrated in Figure 3.7, pending fielding of the Large Advanced Mobile Power Sources
(LAMPS) under a design and build contract awarded in 2012 [58].

Figure 3.7: Tactical Quiet Generators, 100 kW (left) and 200 kW (right), from [58].

3.2.2 Photovoltaic Solar

PV solar panels convert solar energy into regulated direct current (DC) power that can be

used for charging batteries and operating other DC devices. Power for AC loads can be

supplied by routing panel output through an inverter that converts DC to AC. Figure 3.8

displays one example of a fielded tactical PV system.
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Figure 3.8: Solar array component of the USMC Ground Renewable Expeditionary Energy Net-
work System (GREENS), from [62].

Advantages of solar include:

* Panels are lightweight and easily deployable
* Solar energy is a readily available, renewable power source

* Panels and associated controllers are solid state, with no moving parts to wear out
Factors that may limit the utility or effectiveness of PV solar include:

* Solar panel output has substantial daily and seasonal variation; see Figure 3.9. An
effective system requires complementary energy storage to manage these variations

* Site conditions—overhead growth or concealment, surrounding terrain, and place-
ment or orientation restrictions—may limit effectiveness of the panels

* Panels require frequent cleaning to maintain maximum power output, particularly in

dusty environments

3.2.3 Other Sources

Wind turbines and waste-to-energy (WTE) plants have been prototyped, field tested, and
commercially developed as proposed supplements to meeting tactical power demands [54],
[64]. To date, none have been adopted as systems of record within DOD or fielded in

significant quantities.
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Figure 3.9: Variation in solar irradiance at 37 degrees north latitude. Chart by author using 2010
Four Corners, NM data from [63].

3.3 Energy Storage

Intermittent sources such as wind and solar require an energy storage device to bridge
periods of low production. Diesel generator systems, with or without the inclusion of
renewable production, also exhibit increased efficiency when energy storage capabilities
are present and intelligently managed. Storage mechanism in the power industry include
the following items:

Chemical batteries

 Capacitors

Pumped hydroelectric

Thermal mass

Compressed air

Flywheels

* Hydrogen conversion [65]
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Complexity, size, weight, initial investment, or specialized site requirements render all but
batteries unsuitable for the tactical environment [29]. Lithium-ion is presently the most
common chemistry due to its high power capability, high power to weight and volume

ratios, and reasonable lifecycle [29].

Batteries are DC devices; interfacing with AC generators requires an appropriate conver-
sion. On charging, a rectifier converts the AC output of the generator into a DC source
that can charge the battery. On discharge, an inverter converts DC energy from the battery
into AC power to supplant or assist the generator in powering AC loads. This rectifica-
tion/inversion process, combined with losses in charging circuitry and battery chemistry,
result in round-trip energy efficiencies well below 100%. In practice, only about 80% of
the energy devoted to charging a battery will be recovered when subsequently discharg-
ing [18].

3.4 Electrical Loads

We broadly characterize expeditionary power loads as stable or transient based upon the
fluctuations that they create in the grid. Stable loads are relatively small or exhibit little
short-term variation. Examples are lighting, communication systems, computer networks,
and aggregated minor plug loads. Transient loads are cyclical and large in proportion to
overall demand. They may operate either semi-autonomously, such as HVAC, refrigera-
tion, and water heating, or under the control of a user, such as kitchen, laundry, or water

purification equipment.

3.4.1 Environmental Control Units

ECUs are electrically powered, thermostatically controlled devices employed to heat, cool,
dehumidity, filter, and circulate air in expeditionary shelters [66]. In cooling mode, they
utilize a forced air refrigeration system, while in heating mode they distribute forced air
warmed by resistive heating elements. Some ECUs are designed for placement within a
shelter with their exhaust ducted through the shelter walls to the external environment.
Others are intended for external placement, with conditioned air provided to a shelter via

flexible ducting. Figure 3.10 contains examples of two ECU models.
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Figure 3.10: 36,000 BTU/hr environmental control unit (left). ECUs externally installed in
support of insulated fabric tents (right), from [67] and [68].

ECUs are rated by their capacity, measured in BTU/hr, to add (heating mode) or remove
(cooling mode) thermal energy from a shelter. Other relevant characteristics are the volume
of air moved per unit time, measured in cubic feet per minute (CFM), and the electrical
power required for operation, measured in kW. Technical data for several ECUs models
appears in [66], [67], and [69].

Higher thermal capacity units require greater amounts of electrical power. Some ECU
models offer low and high heat settings, and all provide fan-only setting. During cooling
mode, however, it is significant to note that an ECU is not capable of variable output. It

either operates at full capacity—and full power—or it provides no cooling at all.!!

3.4.2 Expeditionary Shelters

Expeditionary shelters accommodate operations centers, billeting, medical suites, dining
and recreation facilities, aircraft and vehicle maintenance, communication centers, and
other functions. Desirable characteristics of a shelter include speed and ease of erection,
durability in adverse environments, and low weight and volume for portability. Many shel-

ters in the DOD inventory are soft-wall, consisting of fabric walls, floor, and roof supported

""Temperature control on many ECUs is managed by using a refrigerant bypass valve to unload, rather
than stop, the compressor once the low temperature setpoint is reached. The compressor and fan continue to
run during this “off” cycle but consume far less power.
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by a metal or airbeam frame [66], [69], [70], [71], . These shelters are shipped unassem-
bled and erected on site. Figure 3.11 and Figure 3.12 contain examples of small and large

expeditionary shelters.

Figure 3.11: Small expeditionary shelters. Alaska Small Shelter System (AKSSS) (left) and Tent
Extendable Modular Personnel (TEMPER) (right) shelters, from [66].

LAMSType/AMI|(Aviation)

Figure 3.12: Large expeditionary shelters. The Large Area Maintenance Shelter (LAMS), for
aviation (left) and vehicles (right), from [69].

Standard fabric shelters are poorly insulated, necessitating substantial HVAC capacity to
maintain desired internal temperature in extreme climates. Modifications to improve insu-
lative value and reduce HVAC demands include solar shades, insulating liners, and spray-on
foam insulation [48], [72].

Other factors influencing heating and cooling requirements for each shelter include the con-
tents, location, and physical characteristics of the shelter. These will be further discussed

in Section 4.2.
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3.5 Distribution

Distribution equipment includes power distribution panels and cabling required for assem-
bly of a grid that can safely and reliably deliver power from the point of production to the

point of consumption.

The tactical power distribution system of record within the USMC is titled the Mobile Elec-
tric Power Distribution-Replacement (MEPDIS-R), while the USA and United States Air
Force (USAF) family of equipment is named the Power Distribution Illumination System,
Electrical (PDISE) [73], [74]. Both systems incorporate protective devices and provide the
ability to connect multiple generators. Figure 3.13 illustrates the sources and loads of a

small camp connected using distribution equipment.

Generator Set

Feeder Center

Distribution Center

Field Tent

Figure 3.13: Tactical power distribution network, from [74].
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3.6 Summary
Having established the foundational understanding of expeditionary energy systems, we
continue with a discussion of our model limitations, assumptions, and mathematical for-

mulation in Chapter 4.
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CHAPTER 4:
Model

Our model minimizes fuel consumption by defining an optimal schedule for generator oper-
ation, ECU utilization, and energy storage management. The principle constraint we must
observe is maintaining internal structure temperature within acceptable upper and lower
bounds. We first develop a thermal sub-model to simulate temperature changes within a

structure and then proceed to formulate the optimization model.

4.1 Model Simplifications and Assumptions
We adopt various simplifications and assumptions to maintain computational tractability,
overcome shortfalls in available data, and maintain focus on our primary research ques-

tions.

Loads are balanced. Total load in each period is split among all operating generators pro-
portional to their nameplate rated capacity. Single phase loads are connected and
operated such that all phases are adequately balanced. We presume that an architec-
ture capable of achieving the optimal control we describe is also capable of balancing
loads and phases, therefore we conclude that this simplification does not diminish the
validity of our conclusions.

Energy storage. Charge and discharge rate limits are constant over the entire range of
battery level, and battery level varies linearly with chosen charge and discharge rates.
The complex, rapidly changing field of optimized battery management is beyond the
scope of the present work.

Power distribution. We do not model limitations and constraints of specific distribution
systems. All power production in each period is aggregated and available to any load.

Thermal behavior. Shelter and ECU performance under varying environmental condi-
tions was estimated using software tools and was not able to be independently vali-
dated using field or test data.

Generator fuel consumption curve. Generator fuel consumption is modeled as piecewise

linear using six points from O to 110% of rated power. This reflects a limitation in
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source data gathered under testing protocols that required evaluation only at these

discrete power levels [75].

4.2 Thermal Model

The temperature within each structure is a function of external environmental conditions,

structural characteristics, and ECU output. Principal components of these factors are:
Environmental

* Solar radiation intensity and angle
* Wind
Relative humidity

* Air temperature

Ground temperature

Ground surface type
Structural

* Surface area

* Volume

* Shape

* Insulation

* Number of personnel inside

* Personnel activity level

* Type and quantity of equipment in use

¢ Ventilation and infiltration
ECU Output

* QOperational status (on / off)

* Cooling capacity [76]
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4.2.1 Model Development

Though our model is indifferent between electrically-powered heating and cooling, for
clarity we discuss only the case of cooling shelters in a hot environment. We adopt a
convention that heat added to a structure by the environment, personnel, or equipment
is positive with rate O, while an operational ECU removes heat at rate Q~. Internal
temperature, T, rises when Q'Jr > Q_, lowers when Q'Jr < Q_, and remains constant when
0T = Q. Thus,

d Tint S+ s
o — 4.1

7 0"-0 (4.1)

Included within Q7 are terms for heat transfer via conduction through the floor and walls

of the structure. Conduction is described by

: KA (Text — Tin
Qg = A~ ) @2

where k is thermal conductivity, A is area, T,y 1s the exterior temperature, and / is thickness
[65]. We assume a constant T,,; for small time intervals and modify (4.1) to reflect that Q™

is a function of internal temperature:

Tt e 0% (1)~ 0" 43)
We use the HVAC Requirements Calculator of the Automatic Distribution Illumination
System, Electrical (AutoDISE) software [77], shown in Figure 4.1, to estimate Q*(’L’im).
Parameters for construction materials, site conditions, and external environmental factors
are provided to the software, which returns the steady-state cooling or heating capacity nec-
essary to maintain the desired internal temperature and humidity [76]. Figure 4.1 illustrates

this interface.
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Wk HVAC Requirements Calculator m

This tool computes the minimum HVAC loads required to heat or cool a shelter, based on the shelter structure, conditions inside the shelter and
external environmental factors. To begin, select a shelter, then modify shelter and/or environmental conditions. HVAC loads are calculated
automatically.

Selecta Shelter: |Alaska, 20x19.5 a
Shelter Internal Conditions Shelter Structure
Number of Personnel: 10 Width at Base: 20 ft. @ Shelter Base Shape: Rectangle
Personnel Activity Level: Moderate Work Length at Base: 195ft Solar Absorption: 0.7
Max Temp in Shelter: 80 °F Height: 10 ft. U-Factor: 0.4 BTU/hr/sqft/°F
Min Temp in Shelter: 50 °F Eave Height: 8 ft.
Desired Humidity Inside: 60 % Angle of Wall
Side to -
Ventilation / Infiltration: 100 CFM Horizontal: 80 ° / 1 Eave Height
Electrical Load: 0 BTU/hr i
(includes only powered
loads)
Environmental Conditions Results
Ambient Temp: 120 °F  Ground Type: Sand Steady State Temp inside Shelter: 80 °F
BTU/r
Ambient Humidity: 3 % Ground Temp: 145 °F The given conditions result . .
H in the Heat Load values FEELETIFTETE O
Wind Speed: 8.9 mph shown to the right, in BTU/hr. Ventilation: 4389
-m To maintain constant .
Solar Load: 231 BTU/hr/sqft temperature within the shelter, Personnel: 5500
air conditioning/heating is Structure: 38322
required to offset the Total Heat
Load. Total Heat Load: 48211

Figure 4.1: AutoDISE HVAC requirements calculator, from [77].

AutoDISE steady-state conditions correspond to d Ty, /dt =0, or QT (T;) = Q~, where O~
is the result provided by AutoDISE. By varying 7;,; over our range of interest while holding
all other inputs constant we observe the behavior of o (Tine) and are able to develop linear

approximations.

The final component in our framework is specifying the relationship of Equation (4.3).
The portion of heat flow that manifests as a change in air temperature depends upon the
mass and heat capacity of the air in the shelter relative to the mass and heat capacity of
other shelter contents [78]. We represent this with ¢ and select a value of 0.10 as our

approximation.

Air density (p) and heat capacity (cp) vary less than 4% within the temperature range
considered by this model. We treat these as constants with the specified values.
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4.2.2 Thermal Model Formulation

4.2.3 Sets and Indices

seS Set of all structures and associated ECUs
teT Set of time intervals
Parameters

cp Heat capacity of air [0.9526 BT U /kg -° C]
p Density of air [1.1894 kg/m°]
Time interval width [minutes]

[0] Proportion of heat flow that manifests as a change in air temperature

Shelter and Environmental Characteristics

Vg Internal volume of structure s [m3]

Bs Equilibrium heat transfer rate intercept for structure s [BTU /hr]

mg Equilibrium heat transfer rate slope for structure s [BTU /hr-° C]

N Heat removal capacity of ECU for structure s [BTU /hr]
Variables

Tyt Shelter s internal temperature at end of interval ¢ [°C]

O (Tei-1) Rate that heat is added to structure s in period ¢ [BTU /hr]
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Heat Transfer Equations

Q‘It(fs,t—l) =My Tgr—1+ ﬁs “4.4)
w o ) .
Tsp = Tsp—1+ 60 m (Q;:t(TSJfl) — 0 ) 4.5)

4.3 Optimization Formulation

We employ a discrete-time mixed integer linear program to minimize generator fuel con-
sumption by prescribing periods of ECU operation subject to specified internal temperature
requirements and equipment operating limitations.

4.3.1 Sets and Indices

ses
geG
teT
ceC
beB

Parameters

cp

Set of all structures and associated ECUs
Set of generators

Set of time intervals

Set of fuel curve linearization points

Set of storage batteries

Heat capacity of air [0.9526 BTU /kg - C]

Density of air [1.1894 kg/m’]

Time interval width [minutes]

Proportion of heat flow that manifests as a change in air temperature

Internal volume of structure s [m3]

Equilibrium heat transfer rate intercept for structure s in interval ¢ [BTU /hr]
Equilibrium heat transfer rate slope for structure s in interval ¢ [BTU /hr-° C]
Heat removal capacity of ECU for structure s [BTU /hr]

Power required by ECU s in operation [kW]

Maximum rated power of generator g [kKW]
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hig High temperature limit for structure s in interval ¢ [°C]

log; Low temperature limit for structure s in interval ¢ [°C]
erung;  Minimum run time for ECU s [minutes]

grung,  Minimum run time for generator g [minutes]

eresty;  Minimum rest time for ECU s [minutes]

grest;  Minimum rest time for generator g [minutes]

w Time interval width [minutes]
Uy Unmanaged load requirements in time interval ¢ [kW]
a Unmanaged power production in time interval ¢ [kW]

fint, Y-intercept of fuel curve for generator g [galllons/hr]
fxec Fuel curve x-axis linearization points [% of full power]
fge Fuel curve y-axis linearization points [gallons/hr]

capp  Capacity of battery b [kWh]

charg, Maximum charge rate of battery b [kW]

disch;, Maximum discharge rate of battery b [kW]

i Efficiency of battery b [%]

4.3.2 Continuous Variables

Ts.t Shelter s internal temperature at end of interval ¢ [°C]
o1 Total fuel consumed by generator g during interval ¢ [gallons]

vfe,:  Power-dependent fuel consumption rate by generator g during interval ¢ [gallons/hr]

bivly,; Level of battery b at end of interval 7 [kWh]

P’ Power level of running generators in interval ¢ [% of full power]

Py, Power level of generator g in interval ¢ [% of full power]

P’ if generator g is running in interval ¢
0  otherwise

in,;  Power directed to battery b in interval ¢ [KW]
out,; Power supplied by battery b in interval 7 [kKW]
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4.3.3 Binary Variables

1 if generator g is running during interval ¢
Genong = ]

0 otherwise

1 if generator g is started at beginning of interval ¢
Genstartg = ]

0 otherwise

if generator g is stopped at beginning of interval ¢
Genstopg, ]
‘ otherwise
Y 1 if ECU for shelter s is operated in time interval ¢
S, =

El

e)

otherwise

—

if ECU for shelter s is started at beginning of interval ¢

T hermstarts,

(e)

otherwise

—

if ECU for shelter s is stopped at beginning of interval ¢

I
—N —
S =

(e)

T hermstops ]
’ otherwise

4.3.4 Specially Ordered Set Type 2 (SOS2) Variables

Agic ¢ fuel curve linearization inflection point for generator g in interval ¢

Linear interpolation of fuel consumption is performed by employing specially ordered set,
type 2 (SOS2) variables in the General Algebraic Modeling System (GAMS) optimization
software. SOS2 variable sets can be of any length, however the values assigned to members
of the set must obey two rules: (1) at most two members of the set may have non-zero
values, and (2) any non-zero values must be adjacent members of the set.

As an example, if the parameter for generator g’s power level linearization points is fx, . =
[0,20,40,60, 80, 100] and the linearization SOS2 variable is A4 . = [0,0,0.4,0.6,0,0], then
the interpolated value is 40 x 0.4+ 60 x 0.6 = 52. An additional constraint ensures that the
members of the SOS2 variable set sum to one.
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4.3.5 Objective
minimize Z Z fer (4.6)

teT geG

Our formulation minimizes total fuel consumption subject to the following:

4.3.6 Constraints

Z Yirs+u + Z iny; < Z Py 1kg + Z Npouty s + a vieT 4.7)
seS beB geG beB
P, < Genong, VeeG,teT 4.8)
Py, > P — (1 —Genong,) VgeGteT 4.9)
Py <P} VgeGteT (4.10)
Poi =Y Agscfige VgeGteT (4.11)

ceC

w

e = g5 Cezczg,,,cfyg,c VgeGteT (4.12)
Y Agic=1 VgeG,teT (4.13)
ceC
Agrec >0 VeeC,geG,teT (4.14)
for = gv—o(fintgGenongJ +fg.r) VeeGteT (4.15)
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Tsr < higy VseSteT

Tsr 2> logy VseS,teT
w o .
Ts,t:Ts,tfl""@'m(ms'fs,tfl'i'BS_Qs) VseS,teT
Ys: =Y ;-1 +Thermstarty; — Thermstopg VseS,teT
Y, > Thermstartg,; Vs € 8,t <t' <t+eruns/w
Yy < (1 —Thermstopg) Vs € G,t <t <t+eresty/w
Thermstarts; +Ys ;1 <1 VseS,teT
Thermstopg; —Ys;—1 <0 VseS,teT
Thermstarty; + Thermstops; < 1 VseS,teT
Genong; = Genong ;1 + Genstartg; — Genstopg VgeG,teT
Genong o > Genstartyg VeeGt<t <t +grung /w
Genong < (1 — Genstopy,) Vg € G,t <t <t+gresty/w
Genstartg; + Genong, 1 < 1 VgeG,teT
Genstopg, — Genong; 1 <0 VgeGiteT
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(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)



Genstartg; + Genstopg; < 1

iny; < chargy

outy; < disch,

w

blvl, , = blvly, ,_
Vip ¢ Vaz1+60

(inp, — outy ;)
0 <blvly; < capy,

P =0

Py >0

Vier =0

Genstarty; € {0,1}

Genstop,; € {0,1}

Genong; € {0,1}

Thermstarts; € {0,1}

Thermstops; € {0,1}

Y, €{0,1}

41

VgeGteT

VbeB,teT

VbEBtET

VbeB,teT

VbeBteT

VieT

VgeG,teT

VgeG,teT

VeeG,teT

VgeG,iteT

VeeGteT

VseS,teT

VseS,teT

VgeG,teT

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)



Equation (4.6) seeks to minimize fuel consumption. Equation (4.7) ensures that power
supplied by all sources in each period is sufficient for all running loads.

Equations (4.8) through (4.10) require all parallelled generators to operate at the same
percentage of full load.

Equations (4.11) through (4.14) calculate variable fuel consumption by each generator as
a piecewise linear function of operating state and power level. Equation (4.15) determines
total fuel consumed in each time period.

Equations (4.16) and (4.17) maintain temperature of each structure within the specified
range.

Equations (4.18) through (4.24) establish ECU and shelter thermal continuity in successive
periods and enforce minimum run and rest times for each ECU.

Equations (4.25) through (4.30) establish generator continuity in successive periods and
enforce minimum run and rest times for each generator.

Equations (4.31) through (4.34) maintain battery charge level continuity and enforce bat-
tery charge and discharge limitations.

Equations (4.35) through (4.43) enforce binary and non-negativity constraints.

4.4 Summary

The thermal and optimization models presented in this chapter establish a mechanism for
evaluating the potential benefits of optimal time-shiftable load scheduling. In the next chap-
ter we apply these models to a representative grid configuration and analyze the results.
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CHAPTER 5:
Application and Baseline Analysis

We apply the model developed in Chapter 4 by creating six variants that explore optimality
and computational performance tradeoffs. Using field data from Afghanistan, we approxi-
mate a tactical power grid and apply our six model variants to establish analytical baseline
levels of fuel consumption, thermal conditions, storage performance, and generator opera-
tion.

5.1 Model Variants

The thermal and optimization models are combined with a discrete-time simulation to de-
velop an ensemble framework that accepts equipment characteristics, environmental fac-
tors, projected unmanaged demand, and anticipated renewable production as inputs and
returns operating schedules for ECUs, generators, and storage as outputs. Figure 5.1 de-
picts this relationship.

Inputs

ECUs

- Power demand
- Capacity

- Physical constraints Legacy

Generators Dis_crete-_time
- Fuel usage Simulation

- Power rating

Thermal Model

- Physical constraints Outputs
Shelter Operating schedule for:
- Temperature

- Physical characteristics « ECUs

Energy Storage Time-step » Generators
- Capacity Optimization
+ Energy Storage

- Charge/Discharge limits Thermal Model

Unmanaged requirements CIElE] MEEHE S

Renewable production

Environmental conditions

Figure 5.1: Ensemble simulation and optimization model framework.
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5.1.1 Model Variants

We develop six variants of the model to evaluate the potential impact of optimal load man-
agement. The first implementation performs only discrete-time simulation of a legacy un-
managed grid to establish a minimum fuel efficiency benchmark. Another model, granted
complete visibility on upcoming conditions and permitted to optimize all decisions, es-
tablishes a theoretical upper bound on fuel efficiency under ideal circumstances. Four
intermediate variants aid in isolating the contribution of load management and evaluating
potential system performance under imperfect knowledge. The six variants are:

Legacy unmanaged (LGCY). We stipulate that all generators run continuously to ensure
sufficient power is available to supply all connected loads and perform time-step
simulation using the thermal model of Section 4.2 to establish thermostatically-
determined ECU start and stop times. The model sums total ECU and unmanaged
loads in each period to determine total demand, and supplies this demand first with
perishable renewable production and then with generator output to fulfill any remain-
ing balance. Equations (4.11) through (4.15) determine generator fuel consumption
based on load in each period.

Perfect future knowledge, storage only management (PFK-SOM). A hybrid policy in
which ECUs are unmanaged and thermostatically controlled as in the legacy unman-
aged arrangement and generators run continuously. We optimize storage charge and
discharge using full visibility over the entire planning period.

Perfect future knowledge, generator and storage management (PFK-GSM). ECUs re-
main unmanaged and thermostatically controlled as in PFK-SOM. We optimize gen-
erators operation and energy storage using full horizon visibility.

Perfect future knowledge, full management (PFK-FM). We provide the optimization model
of Section 4.3 visibility on all parameters in every period throughout the planning
horizon, allowing it to return globally optimal decisions for ECU operation, genera-
tor control, and storage management. To maintain computational tractability we use
the linear relaxation of this integer model unless otherwise specified.

Rolling horizon, perfect future knowledge (RH-PFK). We divide the entire planning hori-
zon into multiple increments and iterate through them sequentially. At the beginning
of iteration n the model receives perfect knowledge of conditions upcoming in in-
crements n and n+ 1 and develops an optimal schedule for these two increments.
Increment n decision variables for generators (Genony ;, Genstarty s, Genstopg ;) and
ECUs (¥;,) are fixed to the value determined by the schedule, and the model finishes
by executing increment n to determine optimal levels for the variables that were not
fixed. This cycle of two-increment visibility/optimization and one-increment exe-
cution continues until the end of the planning horizon. Figure 5.2 illustrates this
approach.
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Rolling horizon with uncertainty (RH-U). Similar to RH-LPK, however at the begin-
ning of increment n we supply the model with forecasted demand and environmental
parameters for increments n and n + 1 and receive an optimal ECU, generator, and
storage management schedule for these increments based on our forecasts. In the
execution phase we replace the increment n forecasted planning parameters with “ac-
tual” values drawn from specified random distributions and optimize for this single
increment.

_ Increment
Iteration 1 2 3 4 5 6
Plan
1 Fix variables,
Execute
Plan
2 Fix variables,
Execute
Plan . o o
3 Fix variables,
Execute
Plan
4 Fix variables,
Execute
Plan
5 Fix variables,
Execute

Figure 5.2: Rolling horizon optimization.
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The first four variants demonstrate the effect of increasing optimization opportunities over
the full horizon. The final two variants evaluate rolling horizon performance under both
perfect and imperfect knowledge conditions. Table 5.1 provides a summary of all six model
variants.

Variant ECUs Storage Generators
Fixed to .
Legacy LGCY simulation results Fixed ON
Storage optimized with perfect PFK-SOM | Fl)fed to Optimized Fixed ON
future knowledge simulation results
Generator and storage optimized Fixed to - -
. - 5 5 t t!
with perfect future knowledge PFK-GSM simulation results Optimized Optimized
Perfect future knowledge, full PFK-FM Optimized Optimized Optimized
management
Rolling horizon with perfect future RH-PFK Optimized Optimized Optimized
knowledge
Rolling horizon with uncertainty RH-U Optimized Optimized Optimized

Table 5.1: Summary of model variations.

5.1.2 Uncertainty Implementation

The two-step rolling horizon variants require forecasted demand and environmental condi-
tions for the planning phase, and specification of actual demand and environmental condi-
tions for the execution phase. We define these parameters as follows:

al et Forecasted renewable production in period ¢
gderal Actual renewable production in period ¢
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forecast

uy Forecasted unmanaged demand production in period ¢
yderual Actual unmanaged demand in period ¢
Sfj precast Forecasted thermal intercept for shelter s in period ¢
o ual Actual thermal intercept for shelter s in period ¢

For the rolling horizon with perfect future knowledge (RH-PFK) variant, all actual values
equal their respective forecasted values.

For rolling horizon with uncertainty (RH-U), actual values for the execution phase are
random uniform values, U |min,max], centered around forecasted values with a floor of
zero to prevent negative results. We introduce three parameters to specify the maximum
absolute difference between forecasted and actual values:

varg Renewable production variability
vary Unmanaged demand variability
varg Thermal intercept variability

a?ctual — max (07 U [(aforecast —var,- a{orecast) : (aforecast Tvar,- a{orecast)] ) (5 1)
actual __ forecast forecast forecast forecast
u; =max (0,U | | u —vary - u; 7 +var, - u; (5.2)

;f;‘tual — max (O, U |:< s]jtorecast —varg .ﬁsj;orecast> , ( s]jlorecast + varg 'ﬁs];orecast)]) (5.3)

Conditions may exist where actual unmanaged demand in a period is higher than fore-
casted, while actual renewable production is simultaneously lower than forecasted, leading
to infeasibilities from Equation (4.7). We prevent this by requiring the RH-U model to pro-
vision sufficient power generation capacity in the planning stage to accommodate demand
and renewable variability.
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Additionally, actual environmental conditions may differ from forecasted values, causing
shelter temperatures to exceed our upper or lower bounds during the execution phase.
Rather than enforcing Equations (4.16) and (4.17) in the RH-U model, we include the
extent and frequency of temperature violations with fuel consumption as our measures of
effectiveness.

5.2 Baseline Grid Configuration

Our initial configuration is based on a tactical power system surveyed by Shields and
Newell [79] in September and October 2011. Located in southwest Afghanistan, at the time
of the survey this power system supplied a patrol base that housed 45 Marines sheltered in
eight structures served by ten ECUs, three conventional generators, and two hybridized
generators with battery storage. Figure 5.3 outlines the patrol base equipment inventory
and configuration.

The hybrid components of the system include a 84 kWh storage battery de-rated to 42
kWh and a 4.8 kW PV system that harvested approximately 25 kWh of solar energy per
day [80]. COC and billeting plug loads averaged 68.5 kWh per day, and two 2.5 kW B0075
refrigerated storage units (reefers) and a Ground Based Operation Surveillance System
(GBOSS) consumed another 61.7 kWh per day [79].

5.2.1 Equipment Manifest
Our baseline configuration approximates the grid assessed by Shields and Newell with the
following exceptions:

* Wooden buildings are modeled as Base-X 307 fabric structures to take advantage of
thermal performance data available in AutoDISE.

* The BOO14 and B0018 ECUs serving the COC are aggregated into a single ECU
due to limitations of our present model which require a one-to-one correspondence
between shelters and ECUs.

* The 500 watt (W) GBOSS tower and its dedicated 5 kW generator are not included
in the model.

* Though the direct current air conditioners (DCACs) are capable of variable speed
operation, they are modeled as conventional ECUs with on/off operation due to limi-
tations of the present model which do not permit continuously variable ECU output.

* The two B0OO75 reefer units and all COC and billeting plug loads are treated as un-
managed demand.
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* The patrol base was outfitted with TQGs while the model uses AMMPS generators.
AMMPS is the program of record replacement for the TQGs and is a more relevant
modeling selection.

(;)32075 P EARLCON
eerers W/

IVIEP-803

MEP-806

MEP-805
#1
g MEP-802
ECU Heating Cooling Generator Structures
“8” -B0008  11kW  8.5kW MEP-802 5kW TQG Tent -BaseX305
“14”  -B0014  9.6kW 4.5kW MEP-803  10kW TQG Thermal Liner — HDT Radiant Barrier|
“Reefer’-B0075 n/fa  2.5kW MEP-805  30kW TQG Wood Bldg — Plywood construction
‘DC” -DCAC nl/a 1.6kW MEP-806  60kW TQG

Figure 5.3: Southwest Afghanistan USMC patrol base showing structures, ECUs, and generators,
from [79].

Tables 5.2 through 5.4 provide parameters for the shelters and generators included in the
baseline model configuration. Additional information on thermal model slope and intercept
calculations are in Appendix A.
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Baseline Shelter Configurations

Parameter Shelters 1-5 | Shelters 6,7 | Shelter 8 Shelter 9
Usage Billeting Billeting Billeting COC
Type Base-X 305 | Base-X 305 | Base-X 307 | Base-X 307
Min. internal temp. [°F] 70 70 70 70
Max. internal temp. [°F] 80 80 80 80
ECU capacity [BTU /hr] 36,000 20,000 60,000 96,000
ECU power [kW] 4.5 1.6 8.5 13.0
Thermal slope [BTU /(hr-°C)] -931 -931 -1,226 -1,254
Thermal intercept [BTU /hr] 37,790 37,790 48,794 60,456
ECU run / rest time [minutes] 2/2 2/2 2/2 2/2

Table 5.2: Shelter configuration for baseline model.

Baseline Generator Configurations

Parameter Generator 1 | Generator 2 | Generator 3 | Generator 4
Type AMMPS AMMPS AMMPS AMMPS
Frequency [Hertz] 60 60 60 60
Rating [kW] 10 10 30 60
Gen. run / rest time [minutes] 5/5 5/5 5/5 5/5
Table 5.3: Generator configuration for baseline model.
FUEL CONSUMPTION USING AVL
Generator Model
Power 5-kW 10-kW 15-kW 30-kW 60-kW
Percent gal/hr gal/hr gal/hr gal/hr gal/hr
110% 0.55 0.98 1.39 3.11 5.33
100% 0.51 0.88 1.24 2.79 4.92
75% 0.42 0.70 0.95 2.00 3.96
50% 0.34 0.53 0.73 1.39 2.74
25% 0.27 0.38 0.49 0.92 1.66
10% 0.23 0.29 0.38 0.65 1.08
0% 0.20 0.24 0.31 0.59 0.74

Table 5.4: Fuel consumption of AMMPS generator sets, from [75].
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5.2.2 Storage, Renewables, Unmanaged Demand, and Uncertainty

We establish the following parameters for the baseline configuration:

Storage. We aggregate all storage into a single battery and set the following values:

0.2-
chargy, = disch, = # =8.4kW VbeB

.
n,=175% VbeB

Renewables. Renewable production of 25 kWh per day is evenly distributed for a baseline
forecasted renewable contribution of 1.04 kW in each period.

a =al " =1.04kW  VteT

Unmanaged demand. We treat COC and billeting plug loads of 68.5 kWh per day as
evenly distributed, resulting in demand of 2.85 kW during each period. The potential
demand of two 2.5 kW reefers are added to establish a forecasted unmanaged demand
level of 7.85 kW in each period.

w=ul/ " =785kW  WreT

Uncertainty. We specify maximum renewable and thermal intercept variability for Equa-
tions (5.1) through (5.3) as:

var, = var, = 0.15
varg = 0.05

To accommodate this uncertainty we require that the RH-U variant provision gener-
ator capacity that is at least 120% of forecasted demand for each period.

5.3 Baseline Configuration Results

We present the results obtained from running all six model variants on the baseline config-
uration over a ten-hour optimization horizon with two-minute time steps (w = 2). Rolling
horizon variants (RH-PFK and RH-U) employed 20 iterations, planning for 60 minutes
and executing 30 minutes in each iteration. Optimization dimensions and computational
performance data are contained in Appendix B.
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5.3.1 Fuel Consumption
Cumulative fuel consumption for each model variant over the ten-hour optimization hori-
zon is tabulated in Table 5.5.

Baseline Cumulative Fuel Consumption
Variant Best Solution | Best Possible | Reduction vs.
[gallons] [gallons] LGCY [%]
PFK-GSM 23.5 23.1 28.6
PFK-SOM 33.0 32.8 NA
LGCY 32.9 32.9 NA
PFK-FM (RMIP) 15.9 NA 51.7
PFK-FM (integer) 22.3 19.7 32.2
RH-PFK 22.9 22.9 30.4
RH-U 23.7 23.5 28.0

Table 5.5: Cumulative fuel consumption for baseline configuration after 10 hours.

For the baseline configuration we include both integer and relaxed mixed integer pro-
gram (RMIP) linear solutions for the perfect future knowledge, full management (PFK-FM)
model. The integer solution required 22 hours to close within 12% of optimality.

Unsurprisingly, the legacy unmanaged (LGCY) mode is at the upper end of fuel consump-
tion. Though we expect the performance of perfect future knowledge, storage-only man-
agement (PFK-SOM) to be at least equal to that of LGCY, our results indicate that the
best integer solution for PFK-SOM uses slightly more fuel. This is attributable to our stop-
ping conditions that include a relative optimality gap of 4%. If we permit the model to
continue optimizing we would see PFK-SOM improve to at least the LGCY value, but in
no case would it go below the best possible solution of 32.8 gallons. We conclude that a
PFK-SOM scheme in which generators are always running offers no significant advantage
over existing LGCY methods for the modeled grid conditions.

The perfect future knowledge, generator and storage management (PFK-GSM) perfor-
mance shows a considerable reduction in fuel consumption relative to LGCY values. Recall
that in PFK-GSM the generators and storage are optimized and ECU operation is fixed be-
forehand to the behavior that would occur if they were under thermostatic control. These
results indicate that under some conditions we may see considerable improvements to fuel
efficiency by merely predicting—and subsequently constraining—upcoming ECU behav-
ior and then optimizing generator operation to match the defined load schedule.

The RH-U model, burdened with our requirement to provision sufficient capacity to meet
120% of predicted load in each period, nevertheless consumes only 3.5% more fuel than
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its perfect knowledge counterpart, RH-PFK. This is explained by the high system load
factor for both variants, illustrated in Figure 5.4. We showed in Figure 1.6 that genera-
tor efficiency “flattens” as load factor increases, resulting in only modest changes to fuel
efficiency as we move between load factors above 50%.

Load Factor
RH-U and RH-PFK
S | ,‘ Avg. Load
= A i ‘ (%)
bt \ \
2 8- v\,}\ / ﬂ ‘ 54.1
cU = - o | - = - -—llde oo oo oo oo - -
LL ¢
S
(@]
-1 o
Q -
—— RH-U
o - RH-PFK
[ [ [ [ [ [
100 120 140 160 180 200
Time Interval

Figure 5.4: Baseline configuration generator loading for RH-U and RH-PFK.

5.3.2 Thermal Observations

Figure 5.5 displays the interior temperature of Base-X 305 shelter equipped with a BOO14
ECU over the ten-hour horizon for LGCY and RH-U variants. The sawtooth pattern shown
by LGCY is characteristic of a thermostatically controlled load that switches modes only
when reaching a high or low limit. PFK-SOM and PFK-GSM fix ECU operation to the
same thermostatically determined cycles and exhibit the exact same behavior.

The optimal ECU scheduling of RH-U results in temperature variations driven by globally
optimal fuel efficiency considerations. RH-PFK presents similar results to RH-U; Fig-
ure 5.6 displays both over a subset of the optimization period for comparison.
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Internal Temperature of Base—X 305 with B0O014 ECU
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Figure 5.5: Baseline thermal behavior of a Base-X 305 shelter equipped with B0014 ECU under
LGCY and RH-U variants.
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Figure 5.6: Comparison of interior temperatures for Base-X 305 shelter with B0014 ECUs under
RH-U and RH-PFK.
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The DCAC units have far less cooling capacity than the BOO14 ECU, resulting in slower
cooling and higher duty cycle for the same environmental and shelter conditions. Figure 5.7
shows LGCY and RH-U results for interior temperature in a Base-X 305 equipped with a

DCAC. With the exception of two brief periods the DCAC is always running in the LGCY
variant.

Internal Temperature of Base—X 305 with DCAC
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Figure 5.7: Baseline thermal behavior of a Base-X 305 shelter equipped with DCAC under LGCY
and RH-U variants.

We point out two observations from these results. The first is the overall upward tem-
perature bias in RH-U relative to LGCY. In the Base-X 305 with BO014 ECU shown in
Figure 5.5, the mean RH-U temperature is 1.2 F higher than the mean LGCY tempera-
ture. This difference rises to 5.8 F in the Base-X 305 with DCAC shown in Figure 5.7.
This is consistent with our thermal model, which recognizes that more energy—and more
fuel—are required to maintain lower shelter interior temperatures.

The second, seemingly contrary, observation is that an optimally scheduled ECU will often
initiate cooling well before approaching the high temperature limit. An example of this
phenomenon are highlighted in Figure 5.8. We draw two conclusions from this observation.
First, the model elects to use currently available energy to do work now rather than store the
energy in the battery to do work later. We discuss storage utilization further in Section 5.3.4
and Section 6.3. Finally, we conclude that the RH-U model validates our premise that time-

shifting ECU operation can be employed to shape demand and lower overall overall fuel
consumption.
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Internal Temperature of Base—X 305 with B0O014 ECU
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Figure 5.8: Behavior of optimally scheduled ECUs with one example of time-shifted load man-
agement highlighted. Many other instances of time-shifting can be seen in the figure.

As discussed in Section 5.1.2, evaluation of RH-U requires an assessment of the frequency
and magnitude of temperature violations that occur due to differences between forecasted
and actual environmental conditions. Table 5.6 provides this data for all nine shelters over
the entire ten-hour time horizon. We determine that 20 minutes of temperature violation
over the 90 shelter-hours modeled in the baseline configuration are not significant. We give
further attention to the effects of environmental uncertainty in Section 6.2.1.

RH-U Temperature Violations for All Shelters in All Periods
Min. Low Limit Max. High Limit | Cumulative Violation
Temp. [F] | Violations | Temp. [F] | Violations Time [minutes]
70.6 0 80.25 10 20

Table 5.6: Temperature violations for nine shelters over ten hours using RH-U model in the
baseline configuration.
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5.3.3 Generator Operation

Analysis of generator operation provides deeper insights on the origin of fuel savings
achieved through optimal ECU management. Figure 5.9 displays the number of running
generators in each period for the LGCY and RH-U models. Permitting optimal scheduling
of both ECUs and generators provides our RH-U model the freedom to provision the most
efficient generator mix capable of fulfilling demand. Table 5.7 lists the number of periods
that each generator is running under baseline conditions in the RH-U model.
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Figure 5.9: Number of running generators in each period of baseline configuration for RH-U and

LGCY.

Baseline Configuration Running Time under RH-U
Parameter Generator 1 | Generator 2 | Generator 3 | Generator 4
Capacity [kW] 10 30 60 10
Operational periods 71 82 172 98
(out of 300)
Running time [%] 23.6 27.3 57.3 32.7

Table 5.7: Generator utilization in the baseline configuration for RH-U model.

Each model is encumbered with specific limitations, granted various optimization free-
doms, and permitted horizon visibility that affect how it generates, stores, and utilizes
power for temperature control. Because every model must achieve the same result of re-
moving sufficient thermal energy from all shelters to maintain the desired temperature,
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however, the total amount of energy delivered to the loads, shown in Table 5.8, is approxi-
mately equal for all variants.

RH-U and RH-PFK first reduce fuel consumption by provisioning fewer generators to de-
liver the total required energy over the course of our optimization trial. The fuel savings
from fewer running generators are compounded by the fact that each running generator
must operate at higher—and more fuel efficient—Iload factors to deliver the same total en-
ergy. Figure 5.10 shows generator load and average utilization for 100 time intervals (200
minutes) of our optimization trial.

We will examine the effect of changes to our generator mix and characteristics in Sec-
tion 6.1.

Baseline Configuration Delivered Energy
LGCY | RH-U | RH-PFK | PFK-SOM | PFK-GSM
Delivered energy [kWh] | 261.9 | 252.8 254.2 263.9 265.6

Table 5.8: Total energy delivered over 10 hours in the baseline configuration.
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Figure 5.10: Baseline configuration generator loading for RH-U and LGCY.
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5.3.4 Energy Storage

Battery level in the baseline configuration for each storage-capable model is shown in Fig-
ure 5.11, and total the energy placed in the battery over the duration of the ten-hour horizon
is listed in Table 5.9. We make two observations from this information. First, battery uti-
lization is low for all variants despite our generously simplified battery model. At no time is
more than 10% of our total 42 kWh battery capacity employed by any model variant. This
is consistent with Van Broekhoven et al. [18], who find diminishing returns from energy
storage as grid design progresses from spot generation to a microgrid.

Our second observation is that the PFK-SOM model, despite having battery storage as its
only avenue for optimization, makes the least use of available storage capability. This indi-
cates that energy storage alone, without a concurrent ability to control electrical production
or loads, offers limited benefit in our baseline grid.

Additional discussion on the impact of variations to storage capabilities and capacities is
contained in Section 6.3.

Battery Level over Time
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Figure 5.11: Baseline configuration battery level.
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Baseline Configuration Battery Utilization

RH-U | RH-PFK | PFK-SOM | PFK-GSM
Total energy placed in battery [kWh] | 15.19 19.12 9.37 16.11
Percentage of total production 6.0 7.5 3.5 6.1

Table 5.9: Battery utilization in the baseline configuration for storage-capable models.

5.4 Baseline Configuration Summary
Our suite of model variants evaluates baseline grid performance by using LGCY opera-
tion as an upper bound and PFK-FM as a theoretical lower bound on fuel consumption.
Intermediate variants offer insight on efficiency gains that may be achieved under various
optimization opportunities and limitations on knowledge of future conditions.

In particular, the results for RH-U suggest the potential for computationally feasible op-
timal scheduling of ECUs, generators, and storage devices to reduce fuel consumption
relative to existing “always on” spot generation arrangements by as much as 28% while
maintaining temperatures within specification and remaining tolerant of uncertainty in any

remaining unmanaged loads.
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CHAPTER 6:
Sensitivity Analysis

We continue our analysis of the baseline configuration presented in Chapter 5 by conduct-
ing sensitivity analysis to evaluate the effect that changes to generator configuration, ther-
mal and environmental parameters, storage characteristics, and unmanaged demand have
on fuel consumption.

6.1 Generator Configuration

6.1.1 Generator Mix

Our baseline grid parameters dictate that the maximum electrical output demanded of the
generators in any period is 56.23 kW'2, well below our total generation capacity of 110
kW. Figure 6.1 shows the impact on fuel efficiency as we change the mix of generators
available to our models.

Effect of Generator Composition on Fuel Efficiency
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Figure 6.1: Effect of generator composition on fuel efficiency.
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We draw attention to three features of Figure 6.1:

1. LGCY fuel consumption converges to our optimized fuel consumption as genera-
tion capacity approaches 60 kW, the minimum required to simultaneously supply all
loads. By this point all running generators are at high load factors and within the
upper portion of the generator fuel efficiency curve.

2. Below 60 kW generation capacity, unmanaged load may exceed production and
LGCY becomes infeasible. Through optimal management of storage and remaining
generators, PFK-GSM remains feasible down to 50 kW of total generation capacity.
By optimally managing generators, storage, and loads, RH-PFK and RH-U remain
feasible and capable of supporting the grid under these particular environmental con-
ditions with only 30 kW of total electrical production.

3. A single 60 kW generator uses slightly more fuel than its optimized 30+10+10 kW
neighbor. While a 60 kW generator is the most efficient means of fulfilling the 56 kW
peak demand, in practice a cluster of smaller generators may offer better aggregate
efficiency for actual grid demand profiles.

We see that optimal scheduling provides the greatest improvements to fuel efficiency when
the existing grid suffers from overgeneration, and diminishes to near-zero as the grid be-
comes ideally sized for the expected load. Our chosen baseline parameters serendipitously
result in a maximum possible load that lies just within the capacity of the 60 kW generator,
providing the LGCY model a better representation here than we would, on average, expect
to see under a wider range of circumstances.

Further investigation into the ability of optimal scheduling to extend grid capability by
multiplexing, or time-sharing generator output to serve collective loads in excess of net
production capacity, is deferred to future studies.

6.1.2 Generator Agility

Once started, generators require a warm-up period before they are ready to synchronize
phase with previously running generators and assume their share of electrical load. Like-
wise, when a generator is to be secured it must be electrically unloaded and permitted to
cool before shutting down.

We enforce these physical constraints as generator run and rest times, which specify the
amount of time that a generator, once added to the grid, must remain connected before
removal and, conversely, the amount of time that a generator, once removed from the grid,
must remain disconnected before it may be reconnected and again contribute to power
production.
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More agile generators—those with shorter run and rest times—reduce optimization con-
straints and presumably offer the potential for greater fuel efficiency. Our baseline configu-
ration sets run and rest times to five minutes, and Figure 6.2 reveals no significant changes
to fuel efficiency as we run four of our model variants with run / rest times varying from O
to 20 minutes.

Effect of Generator Run / Rest Times
on Fuel Efficiency
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Figure 6.2: Impact of generator agility on fuel efficiency.

Though total fuel consumption is largely unaffected by variations to run and rest times,
the actual mix of generators selected by RH-U to achieve these results varies as shown in
Figure 6.3.
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Effect of Run / Rest Times on Generator Mix
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Figure 6.3: Effect of various run / rest times on RH-U generator mix.

We recommend additional investigation to consider:

» Multi-factor analysis of potential interactions between run / rest times and the various
generator configurations described in Section 6.1.1.

* Imposing a penalty for each generator start to balance optimal fuel efficiency with
equipment wear.

6.2 Thermal Conditions

6.2.1 Environmental Influence

We implement changes in environmental conditions by adjusting the intercept value of our
thermal model, with larger values corresponding to warmer exterior conditions and greater
cooling requirements. Figure 6.4 displays the results of running our baseline configuration
with thermal intercept for each shelter scaled between 60% and 110% of its baseline values.

At scaling factors below 0.6 the Base-X 305 billeting shelters require heating and become
infeasible in our current cooling-only model. At factors above 1.1 thermal burden exceeds
the capacity of the DCACs and none of the variants are able to maintain the temperature of
these shelters below the high limit.
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Figure 6.4: Effect of thermal model intercept on fuel efficiency.

Between these two levels we can see in Figure 6.4 that differences in fuel consumption
between LGCY and our optimized variants narrow as thermal burden increases. Table 6.1
details this relationship between LGCY and RH-U fuel consumption.

Effect of Changing Environment on Fuel Consumption
Thermal LGCY Fuel RH-U Fuel RH-U
Intercept Consumption Consumption Reduction vs.

Scaling Factor [gallons] [gallons] LGCY [%]
0.6 21.64 7.99 63.1
0.7 24.02 10.59 55.9
0.8 26.76 15.05 43.8
0.9 29.84 19.69 34.0
1.0 32.90 23.60 28.3
1.1 35.52 27.83 21.7

Table 6.1: Comparison of LGCY and RH-U fuel consumption with changing environmental con-
ditions.

Increased thermal burden imposes two constraints upon ECUs. First, they must operate
more on average to remove heat added throughout the optimization horizon and maintain
shelter temperature within specifications. Second, interior temperatures rise faster and limit

65



the length of time that an ECU may remain idle before a temperature limit is reached.
These influences serve to limit time-shifting freedom and result in diminishing optimization
advantages as load duty cycle increases.

6.2.2 Shelter Thermal Limits

Interior temperature limits are selected for personnel comfort and equipment safety and
reliability. We evaluate the effect that changes to these limits have on fuel efficiency by
maintaining a low limit of 70 F and varying our high limit from 75 F to 85 F. Results are
displayed in Figure 6.5, where we see fuel consumption declining as the distance between
low and high temperature limits increases.

We find that these improvements are attributable to the increasing upper limit of our temper-
ature band rather than the distance between high and low limits. Our optimization models
require a sufficiently large temperature band to prevent infeasibilities in successive peri-
ods, but we find that beyond this threshold there is no significant effect from a larger band.
As seen in Figures 6.6 and 6.7, when provided the freedom to operate in a wide band the
optimally scheduled ECUs elects to operate exclusively near the upper, more fuel efficient,
limit.

Effect of Interior Temperature Band
to Fuel Consumption

—~
fuz)g_%::::AAAAAAA
() T T ———t—t———ot
= O
c O ]
)

L0
c N
c M
= O
Q N e
%m_ "':::¢¢::¢AAA
n - T T ———
CO
S °
— = LGCY

i RH-PFK

g v —— PFK-GSM — RH-U
L e PFK-FM

O_

I I I I I I I I I I I
5 6 7 8 9 10 11 12 13 14 15

Temperature Band (F)

Figure 6.5: Effect of interior temperature band on fuel efficiency. Minimum interior temperature
is held at 70 F while maximum interior temperature varies from 75 F to 85 F.
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Internal Temperature of Base—X 305 with B0O014 ECU
Maximum Interior Temperature = 85 F

S
~—~ L
EL_’ [e¢]
g
= 8
©
]
2 K
2

Lo

© T T T T T T I

0 50 100 150 200 250 300
Time Interval

Figure 6.6: Interior temperature of a Base-X 305 shelter served by B0014 ECU with 70 F to 85
F temperature limits.

Internal Temperature of Base—X 305 with DCAC
Maximum Interior Temperature = 85 F

o
(o))
—~ L
L\L/ [oe}
Q
=
©
Q
2 e
2
Lo
© I [ [ [ [ [ I
0 50 100 150 200 250 300
Time Interval

Figure 6.7: Interior temperature of a Base-X 305 shelter served by DCAC with 70 F to 85 F
temperature limits.

67




6.3 Storage Utilization

Storage utilization for our model variants using the baseline 42 kWh battery with 75%
efficiency were shown in Section 5.3.4. We conduct additional exploration to determine
the effect that changes of battery efficiency and capacity have on fuel consumption.

6.3.1 Battery Efficiency

We run the model with battery efficiency varying from 75% to 100% and show the results
for multiple variants in Figure 6.8. The LGCY variant does not have storage enabled but
is included for reference. The optimally scheduled variants exhibit minor reductions as
battery efficiency improves. Table 6.2 details the results for RH-U, and we see that the
best integer solution for higher efficiencies improves upon the best theoretically possible
solution of lower efficiencies, confirming a relationship between efficiency and fuel con-
sumption. The practical impact is small in the configuration considered, suggesting that we
would see, at most, a 3.6% reduction in fuel use if technological advances placed lossless
storage options at our disposal.

Effect of Battery Efficiency
on Fuel Consumption
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Figure 6.8: Effect of battery efficiency on fuel consumption.

Figures 6.9 through 6.11 illustrate how the battery is used at 75% and 100% for the PFK-GSM,
RH-PFK, and RH-U variants.
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Effect of Battery Efficiency on RH-U Fuel Consumption
Battery Best Integer Best Possible
Efficiency [ %] [gallons] [gallons]
75 23.89 23.76
80 23.64 23.49
85 23.40 23.25
90 23.54 23.28
95 23.23 23.20
100 22.97 2291

Table 6.2: RH-U fuel consumption for battery efficiency values of 75% to 100%.
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Figure 6.9: Battery utilization by PFK-GSM model at 75% and 100% battery efficiency.
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RH-PFK Battery Utilization at 75% and 100%
Battery Efficiency. Initial Charge = 0
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Figure 6.10: Battery utilization by RH-PFK model at 75% and 100% battery efficiency.
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Figure 6.11: Battery utilization by RH-U model at 75% and 100% battery efficiency.
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6.3.2 Battery Capacity

Changes to battery capacity affect our storage-enabled model variants in two ways. First,
additional capacity permits a larger amount of energy to be stored for use in future periods.
Additionally, our model computes maximum battery charge and discharge rates as linear
functions of battery capacity. Doubling capacity also doubles the rate at which energy can
be placed into or removed from the battery.

We determine the impact of these joint effects on fuel consumption by varying battery ca-
pacity from O to 80 kWh under the RH-U variant. These results are displayed in Table 6.3.
We note that the best possible solution for some battery capacities is marginally worse than
the best possible solution for a lower battery capacity. We attribute this to our choice of
absolute and relative optimality gaps and to the rolling horizon methodology that makes
early decisions before all information is known. We expect that any significant advan-
tages of larger batteries would be evident, and we therefore conclude that having additional
capacity and higher charge / discharge rates offers no discernible benefit to an optimally
scheduled system in our modeled configuration.

Effect of Battery Capacity on RH-U Fuel Consumption
Battery Best Integer Best Possible

Capacity[kKWh] [gallons] [gallons]

0 23.95 23.66

10 23.62 23.44

20 23.80 23.58

30 23.11 22.81

40 23.89 23.65

50 23.63 23.43

60 23.23 22.76

70 23.52 23.47

80 23.75 23.68

Table 6.3: RH-U fuel consumption for battery capacities values of 0 to 80 kWh.

Figure 6.12 depicts battery level over the course of a ten-hour optimization horizon under
the RH-U variant with four battery sizes from 20 kWh to 80 kWh, while Table 6.4 lists the
total amount of energy placed into storage.

We conclude that storage is a minor contributor to fuel efficiency under the conditions we
have modeled. We encourage further research that extends this methodology to evaluation
of additional grid configurations and performs multi-factor designed experiments to isolate
the effects of battery capacity, efficiency, and charge / discharge rates on fuel efficiency.
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Effect of Battery Size on Battery Utilization
RH-U, Initial Charge = 0, Efficiency = 75%
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Figure 6.12: Battery utilization by RH-U for sizes from 20 kWh to 80 kWh.
Energy Placed in Battery by Battery Capacity for RH-U
20 kWh | 40 kWh | 60 kWh | 80 kWh
Total energy placed in battery [kW h] 6.4 16.5 18.8 31.2

Table 6.4: Total energy placed in the battery by RH-U variant for battery sizes from 20 kWh to
80 kWh.

6.4 Variations in Unmanaged Demand and Renewable Pro-
duction

Variations in unmanaged demand or renewable generation of up to 20% from forecasted
levels (var,,var, < 20%) do not have any significant effect on fuel consumption in the
RH-U variant. At our forecasted value for unmanaged demand of 7.85 kW in each period,
a 20% variation results in no more than 1.6 kW difference between forecasted planning
and actual execution. This is small in relation to total load and sufficiently explains our
observations.

We propose further research to evaluate environments with greater variations in unmanaged
demand or unmanaged demand that is a larger proportion of overall demand. Additionally,
we recommend consideration of robust demand handling mechanisms that would, for ex-
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ample, perform priority-based cancellation and rescheduling of time-shiftable events to
accommodate unmanaged demand variability without over-provisioning generators.

6.5 Summary

Analysis for our modeled configuration shows that the fuel efficiency of optimally sched-
uled systems relative to existing “always-on” systems is sensitive to (1) the excess genera-
tion capacity of the legacy system, (2) load duty cycles due to thermal burden on the shelter
and ECU system, and (3) shelter interior temperature limits. Our results are not sensitive
to storage capacity, storage efficiency, or generator run / rest times.
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CHAPTER 7:

Conclusions and Future Work

7.1 Conclusions

Optimal scheduling of time-shiftable loads has the potential to substantially reduce fuel
consumption at the tactical edge, where energy costs and risks are the greatest. Intelligent
management of generators, loads, and storage devices can minimize the number of running
generators, improve average generator loading, and reduce peak-to-average power ratios
while maintaining shelters within specified temperatures.

The benefits of optimal scheduling relative to unmanaged systems are most pronounced
when loads operate at low duty cycles. This condition offers the greatest opportunity for
load shifting to reduce peak demand and permit load satisfaction with smaller generators.
As load duty cycle approaches 100% the benefits of optimal scheduling relative to a prop-
erly sized unmanaged microgrid diminish to zero. Because load duty cycle is itself cyclical,
with patterns of high ECU duty cycles during the mid-day heat and low duty cycles in the
cooler night hours, we expect any typical grid to operate well below 100% for a substantial
portion of its periodic cycle and thus benefit from optimal scheduling.

Repeated assessments reveal that most expeditionary energy installations are not prop-
erly sized due to limitations on available generators and distribution equipment, risk atti-
tudes that insist upon dedicated generators for critical loads, and expedient—rather than
deliberate—system expansion and modification over time. Finally, even a well-designed
system must “round up” cooling requirements to the nearest discretely-sized ECU and,
once all electrical loads are summed, round up once again to the closest generator package
capable of meeting the total load. Optimal scheduling offers a robust means to reduce the
practical and systemic fuel consumption inefficiencies presented by the current architec-
ture.

Our research suggests that optimally scheduled systems with energy storage will meet or
exceed the performance of an unscheduled hybrid system by offering the choice to invest
energy into current work instead of storing the energy, at a loss, to do work later. Optimal
scheduling offers the potential to capture hybrid benefits while using a substantially smaller
battery, reducing both deployment weight and battery lifecycle costs.

The enabling technologies necessary to implement optimal scheduling include appliance
control, environmental monitoring and forecasting, and demand prediction. These tech-
nologies are already employed in the consumer, industrial, transportation, and commercial
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utility sectors to manage energy demand and reduce costs. The DOD, as both the supplier
and consumer of expeditionary energy, is uniquely positioned to adapt and vertically inte-
grate these methods into its suite of tactical power and environmental control equipment.

These enabling technologies facilitate additional features that improve grid stability and
performance. In the event of a partial outage, prioritized load-shedding can drop non-
critical loads, such as billeting environmental control, in order to preserve continuity of
power to critical loads such as perimeter security lighting, command and control equip-
ment, and medical facilities. Multi-plexing, or time-sharing, of power production offers
the potential to connect loads in excess of generation capacity without risk of overload,
improving fuel efficiency in normal operations and enhancing grid resilience to generator
casualties.

7.2 Future Work

We classify opportunities for future work into directions for additional analytical methods
and directions for further research.

7.2.1 Analytical Methods

Our current model treats ECU operation as a binary on / off variable, consuming either
zero or full rated power. This simplification ignores compressor unloading on current gen-
eration ECUs as well as the stepped or continuously variable cooling capacity and power
demand of the DCAC and IECU. Higher-fidelity modeling of ECU operation will offer a
more accurate and compelling analysis of potential fuel savings achieved through optimal
scheduling.

We have limited our sensitivity analysis to variations of one parameter while all others
are held constant. This single-factor analysis masks potentially confounding interactions
between multiple parameters that may impact fuel efficiency. We recommend a multi-factor
designed experiment to gain additional insight on the value of optimal scheduling under a
broader range of conditions.

Our optimal scheduling model could be re-cast as a priority queueing model, viewing ECU
demand or shelter thermal status as customers and electrical production as servers. This
approach may reduce computational demand, provide greater ability for dynamic resource
allocation and re-provisioning, and be more robust to uncertainty at the expense of global
optimality. We propose additional investigation to determine the feasibility, advantages,
and limitations of a tactical power queuing model relative to our optimal scheduling ap-
proach.
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Machine learning and model predictive control present opportunities for enhanced uncer-
tainty management. Our current rolling horizon with uncertainty model over-provisions
generation capacity by a fixed percentage of forecast load in the planning phase to account
for variations in actual conditions during the execution phase. Refining forecasts based
upon historical conditions may reduce the amount of over-provisioning and the resulting
generation-demand mismatch, leading to even greater fuel savings.

7.2.2 Further Research

Results from our PFK-GSM variant indicate that many of the fuel-efficiency benefits of
optimally scheduled ECUs may be captured by determining, at the beginning of a plan-
ning period, what each thermostatically controlled ECU must do to maintain temperature,
and then constraining their operation in an upcoming execution interval to that schedule
while optimizing generator and storage operation to meet demand. We expect that this new
variant, which we label rolling horizon, generator and storage management (RH-GSM),
will sacrifice optimality but gain computational speed that could permit finer resolution
modeling.

The telecommunication industry uses time-division multiplexing to serve the needs of mul-
tiple customers using resource levels that are incapable of meeting theoretical peak demand,
but are sufficient to provide uninterrupted and transparent service for actual demand levels.
Tactical power multiplexing offers the potential for fuel savings and grid resilience and
warrants additional research on the risks, benefits, and sensitivities presented.

Our current research focuses on ECUs as the most egregious consumers of electricity
on the battlefield. Capturing additional time-shiftable loads, both independent and user-
controlled, may yield further opportunities for fuel conservation. Candidates for further
study include water purification, water heating, refrigeration, laundry, mess operations,
and manned and unmanned electrically-powered mobility platforms.

We recommend a comprehensive cost-benefit analysis that explores technology investment,
deployment, and lifecycle costs against projected savings on the fully burdened cost of fuel
to determine a net present value of implementing an optimally scheduled grid. We recom-
mend field trials to validate the findings of our current research, and a systems engineering
and cost-based analysis of alternatives for implementing optimal scheduling through retrofit
of existing equipment or integration into succeeding generations of equipment.

77



THIS PAGE INTENTIONALLY LEFT BLANK

78



APPENDIX A:

Baseline Configuration Thermal Calculations

The heat transfer slope and intercept values for the thermal model of Section 4.2 are de-
termined by shelter characteristics and environmental conditions. We provide the input
parameter values, computational methodology, and results for the baseline scenario below.

Tables A.1 and A.2 contain the baseline AutoDISE and thermal model input values. We
use these values to initialize the AutoDISE HVAC requirements calculator and then vary
the “Max Temp in Shelter” parameter between 70 F and 90 F and record “Total Heat Load”
results. Figures A.1 through A.3 show the HVAC requirements calculator interface for the
three categories of shelters in the baseline configuration.

Tabulated results for internal shelter temperatures between 70 F and 90 F (21.1 C and 32.2
C) appear in Table A.3. Analysis reveals that the values are nearly linear over the range
of temperatures we consider. Figure A.4 displays the plotted data and linear fit line, while
Table A.4 contains the linear regression fit data that we use in the thermal model.

Environmental Conditions
Parameter Value
Ambient air temperature [°F] 95
Ambient relative humidity [%] 15
Ground type Grass/Dirt
Ground temperature [°F] 105
Wind speed [miles/hr] 8.9
Solar load [BTU /(hr-sqft)] 275

Table A.1: Baseline grid configuration environmental conditions.
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Shelter Structural Characteristics and Internal Conditions

Shelters 1-7 | Shelter 8 Shelter 9
Number of personnel 10 12 14
Personnel activity level At rest Atrest | Moderate work

Desired internal humidity [%]

60

60

60

Ventilation / infiltration [ f1> /min]

100

120

140

Electrical load [BTU /hr]

682

682

7506

Shelter volume [1m°] 90.4 90.4 126.6
U factor [BTU /(hr- ft*> -° F)] 0.2342 0.2342 0.2342
Solar absorption 0.2 0.2 0.2

Table A.2: Baseline grid configuration shelter characteristics and internal conditions.

W HVAC Requirements Calculator

P s |

automatically.

This tool computes the minimum HVAC loads required to heat or cool a shelter, based on the shelter structure, conditions inside the shelter and
external environmental factors. To begin, select a shelter, then modify shelter andfor environmental conditions. HVAC loads are calculated

Select a Shelter:

BASE-X 305

-

Shelter Internal Conditions
Number of Personnel: 10
Personnel Activity Level: At Rest
Max Temp in Shelter: 75 °F
Min Temp in Shelter: 50 °F
Desired Humidity Inside: 60 %
Ventilation / Infiltration: 100 CFM

Electrical Load:

Environmental Conditions

682 BTU/hr
(includes all loads,
powered or unpowered)

Ambient Temp: 95°F  Ground Type: Grass/Dirt
Ambient Humidity: 15 %  Ground Temp: 105 °F
Wind Speed: 5.9 mph
M Solar Load:

275 BTU/hrfs gft

Shelter Structure

Width at Base: 25 ft.
Length at Base: 15 fi.
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Edit
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Rectangle
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[ -
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Steady State Temp inside Shelter:

The given conditions result
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Elect. Equipment:
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3300
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\

Figure A.1: AutoDISE calculated thermal load for shelters 1-7 at 75F, from [77].
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W HVAC Requirements Calculator

2 [ |

automatically.

Ventilation / Infiltration:

Shelter Internal Conditions
Number of Personnel:
Personnel Activity Level:
Max Temp in Shelter:
Min Temp in Shelter:
Desired Humidity Inside:

Electrical Load:

This tool computes the minimum HVAC |loads required to heat or cool a shelter, based on the shelter structure, conditions inside the shelter and
external environmental factors. To begin, select a shelter, then modify shelter andlor environmental conditions. HVAC loads are calculated

Select a Shelter: |BASE-X 307 -
Shelter Structure

12 Width at Base: 35 ft.  [Z) Shelter Base Shape: Rectangle

At Rest Length at Base: 15 ft. Solar Absorption: 0.2 |
75 °F Height: 105 fi. U-Factor: 0.23419955 |

) BTU/hr/sqft/°F
50 °F Eave Height: &ft
60 % Angle of Wall o
Side to . I

120 CFM Horizontal: 80 ° / )C [ cove eight_|

682 BTU/Mr ® |
(includes all loads. i

powered or unpowered)

Environmental Conditions

Ambient Temp: 95°F  Ground Type: Grass/Dirt
Ambient Humidity: 15%  Ground Temp: 105 °F
Wind Speed: 5.9 mph
Solar Load: 275 BTU/hr/sgft

Results

Steady State Temp inside Shelter: 75 °F
The given conditions result
inthe Heat Load values
shown to the right, in BTU/hr

To maintain constant
temperature within the shelter,
air conditioning/heating is
required to offset the Total Heat
Load

Elect. Equipment:
Ventilation:
Personnel:
Structure:

Total Heat L oad:

BTUihr
682

2633
3960
12205
19481

Figure A.2: AutoDISE calculated thermal load for shelter 8 at 75F, from [77].

-
W HVAC Requirements Calculator

2 [ |

automatically.

Number of Personnel:
Personnel Activity Level:

Max Temp in Shelter:

Min Temp in Shelter:
Desired Humidity Inside:
Ventilation / Infiltration:

Electrical Load:

Ambient Temp: 95 °F

Ambient Humidity: 15 %

Shelter Internal Conditions

Environmental Conditions

This tool computes the minimum HVAC loads required to heat or cool a shelter, based on the shelter structure, conditions inside the shelter and
external environmental factors. To begin, select a shelter, then modify shelter andlor environmental conditions. HVAC loads are calculated

Select a Shelter: | BASE-X 307 (1)

14 Width at Base:

35ft.  [Z)Shelter Base Shape: Rectangle
Moderate Work Length at Base: 18 fi. Solar Absorption: 0.2 |
75 °F Height: 105 f. U-Factor: 0.23419955 |
3 BTU/hr/sqft/°F

50 °F Eave Height: & ft.
60 % Angle of Wall

Side to - |
140 CFM Horizontal: 80 ° / /SX [_eave Heignt |
7506 BTU/hr i i

{includes all loads,
powered or unpowered)

Shelter Structure

Results

Ground Type: Grass/Dirt

Ground Temp: 105 °F
Wind Speed: 8.9 mph

Solar Lead: 275 BTU/hr/sqft

Steady State Temp inside Shelter: 75°F

The given conditions result
inthe Heat Load values

shown to the right, in BTU/hr. Ventilation:
To maintain constant .
temperature within the shelter, pesonael
air conditioning/heating is Structure:

required to offset the Total Heat
Load

Elect. Equipment:

Total Heat Load:

BTUinr
7506

3072
7700
12205
30484

Figure A.3: AutoDISE calculated thermal load for shelter 9 at 75F, from [77].
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Cooling Required to Maintain Temperature
Max Temp Required cooling [BTU/hr]
°F °C Shelters 1-7 Shelter 8 Shelter 9
70 21.1 18,122 22,869 33,981
72 22.2 17,087 21,514 32,582
74 23.3 16,052 20,159 31,183
76 24.4 15,016 18,804 29,785
78 25.6 13,981 17,449 28,386
80 26.7 12,946 16,094 26,987
82 27.8 11,911 14,739 25,588
84 28.9 10,876 13,384 24,189
86 30.0 9,841 12,029 22,970
88 31.1 8,805 10,674 21,392
90 32.2 7,770 9,139 19,993

Table A.3: Results of AutoDISE thermal analysis.

Cooling Required to Maintain Interior Temperature

o
~ 8
L — Te) -1
S ™
. _
b S
o S
O «
£ |
8 g
o 8 —
T -
o _
=
: —
T 3 _ == Shelters 1-7
v 3 —+— Shelter 8 . Dat ] .
o o —¢— Shelter 9 ata inear fi

I I I I I I I I I I I I I
21 22 23 24 25 26 27 28 29 30 31 32 33

Desired maximum shelter interior temperature (degrees C)

Figure A.4: AutoDISE results for required cooling for shelters 1-9 from 21.1C to 32.2C.
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Shelter Heat Transfer Fitted Values

Shelters 1-7 | Shelter 8 | Shelter 9
Slope [BTU /hr-° C] -931 -1,226 -1,254
Intercept [BTU / hr] 37,790 48,794 60,456

Table A.4: Fitted values for the baseline configuration of shelters 1-9.
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APPENDIX B:
Computational Data

Optimization was performed in GAMS running in Windows 7 on a Dell Precision T7500
workstation equipped with dual Intel Xeon X5675 3.06 GHz processors and 64 gigabytes
(GBs) of memory. Problem size, solution time, rolling horizon parameters, and optimiza-
tion stopping conditions are listed in Tables B.1 through B.3.

Optimization Dimensions and Solution Times
Variables

Variant Time Constraints | Total | Binary | SOS2
LGCY <2 sec 2,408 6,897 - -
PFK-SOM < 10 sec 3,000 8,160 - -
PFK-GSM < 3 min 18,596 14,437 | 3,604 | 1,204
RH-PFK 8 to 19 min' 3,711 2,527 | 1,183 124
RH-U 12 to 20 min' 3,711 2,527 | 1,183 124
RMIP <10 sec 37,461 24,005 - -

Table B.1: Solution times and problem dimensions for the baseline configuration.

TRolling horizon times are for the entire ten-hour optimization period.

Stopping Conditions
Relative Optimality Gap | Absolute Optimality Gap Time
4% 0.15 gallons* 30 minutes

Table B.2: Optimization stopping conditions for the baseline configuration.

The absolute optimality gap was selected to prevent excessive solution times in the early
horizons of RH-PFK and RH-U.

Stopping Conditions
Minutes per Interval
2 (10 hours total)

Number of Horizons
20 (30 minutes each)

Number of Intervals
300

Table B.3: Parameters for rolling horizon optimization.
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